Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2 + CH3OH and O2 + CH3OH

Abstract A combination of global uncertainty screening and ab initio theoretical chemical kinetics is used to iteratively improve the mechanism of Li et al. [3] for the ignition of methanol at high pressure. The initial application of the screening analysis indicates that the CH 3 OH + HO 2 reaction dominates the uncertainty in the predicted ignition delay for stoichiometric CH 3 OH combustion at 1100 K and 20 bar. The rate coefficients for both product channels (CH 2 OH + H 2 O 2 and CH 3 O + H 2 O 2 ) in this reaction are predicted with ab initio transition state theory employing barriers and rovibrational properties obtained at the CCSD(T)/CBS//CASPT2/cc-pvtz level. The estimated uncertainty in these predictions is a factor of 2. The second iteration of the screening analysis indicates that the CH 3 OH + O 2 reaction next dominates the uncertainty in the ignition delay at high pressure. The associated rate coefficient is updated using a two transition state model that employs CCSD(T)/CBS//CASPT2/cc-pvtz properties for the tight transition state and direct CASPT2/aug-cc-pvdz based variable reaction coordinate transition state theory for the barrierless formation of the long-range CH 2 OH … HO 2 complex. The final predictions for the ignition delay are a factor of 4 greater than those with the original model and the width of the distributions of ignition delay relative to its peak value decreases by a factor of 3. Further reduction in the uncertainty will require more accurate predictions for the CH 3 OH + HO 2 reaction and new predictions for the HO 2  + HO 2 reaction. The predictions for the CH 3 OH + HO 2  → CH 2 OH + H 2 O 2 , CH 3 OH + HO 2  → CH 3 O + H 2 O 2 , and CH 3 OH + O 2  → CH 2 OH + HO 2 rate constants are well represented over the 400–2500 K temperature range, by the expressions 3.78 × 10 −29 T 5.06 exp(−5140/ T ), 5.54 × 10 −26 T 4.12 exp(−8170/ T ) and 5.95 × 10 −19 T 2.27 exp(−21520/ T ) cm 3  molecule −1  s −1 , respectively, where T is in K.

[1]  Chih-Jen Sung,et al.  Reaction kinetics of CO + HO(2) --> products: ab initio transition state theory study with master equation modeling. , 2007, The journal of physical chemistry. A.

[2]  Henri James,et al.  Etude de l'oxydation et de l'auto-inflammation du méthanol dans le domaine de températures 500-600°C , 1982 .

[3]  T. J. Held,et al.  A comprehensive mechanism for methanol oxidation , 1998 .

[4]  Tamás Turányi,et al.  Uncertainty analysis of updated hydrogen and carbon monoxide oxidation mechanisms , 2004 .

[5]  Srinivasan Nk,et al.  Experimental and theoretical rate constants for CH4 + O2 → CH3 + HO2 , 2007 .

[6]  Hans-Heinrich Carstensen,et al.  Rate constants for the abstraction reactions RO2 + C2H6; R = H, CH3, and C2H5 , 2005 .

[7]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[8]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[9]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[10]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[11]  John M Simmie,et al.  Accurate benchmark calculation of the reaction barrier height for hydrogen abstraction by the hydroperoxyl radical from methane. Implications for C(n)H(2n+2) where n = 2 --> 4. , 2008, The journal of physical chemistry. A.

[12]  Michael J. Pilling,et al.  Evaluated Kinetic Data for Combustion Modelling , 1992 .

[13]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[14]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[15]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[16]  Alison S. Tomlin,et al.  GUI-HDMR - A software tool for global sensitivity analysis of complex models , 2009, Environ. Model. Softw..

[17]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[18]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol , 1987 .

[19]  Kevin J. Hughes,et al.  Significance of the HO2 + CO reaction during the combustion of CO + H2 mixtures at high pressures , 2007 .

[20]  Jürgen Troe,et al.  Shock wave study of the reaction HO2+HO2→H2O2+O2 : Confirmation of a rate constant minimum near 700 K , 1990 .

[21]  Kinetics of the gas-phase recombination reaction of hydroxyl radicals to form hydrogen peroxide. , 2009, The journal of physical chemistry. A.

[22]  Peter Glarborg,et al.  Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH3OH+OH reaction , 2008 .

[23]  F. Dryer,et al.  A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion , 2007 .

[24]  Jan M. L. Martin,et al.  Basis set convergence in second-row compounds. The importance of core polarization functions , 1998 .

[25]  S. Klippenstein Variational optimizations in the Rice–Ramsperger–Kassel–Marcus theory calculations for unimolecular dissociations with no reverse barrier , 1992 .

[26]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[27]  Hans-Heinrich Carstensen,et al.  Rate constants for the H abstraction from alkanes (R–H) by R′O2 radicals: A systematic study on the impact of R and R′ , 2007 .

[28]  L. Radom,et al.  Ab initio statistical thermodynamical models for the computation of third-law entropies , 1997 .

[29]  Michael J Davis,et al.  Theoretical validation of chemical kinetic mechanisms: combustion of methanol. , 2010, The journal of physical chemistry. A.

[30]  Steven E. Wheeler,et al.  Thermochemistry of key soot formation intermediates: C3H3 isomers. , 2007, The journal of physical chemistry. A.

[31]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[32]  Lawrence B Harding,et al.  Predictive theory for hydrogen atom-hydrocarbon radical association kinetics. , 2005, The journal of physical chemistry. A.