A generic interval branch and bound algorithm for parameter estimation

In engineering sciences, parameter estimation is a challenging problem consisting in computing the parameters of a parametric model that fit observed data. The system is defined by unknown parameters and sometimes internal constraints. The observed data provide constraints on the parameters. This problem is particularly difficult when some observation constraints correspond to outliers and/or the constraints are non convex. The ransac randomized algorithm can efficiently handle it, but is non deterministic and must be specialized for every problem. This paper presents the first generic interval branch and bound algorithm that produces a model maximizing the number of observation constraints satisfied within a given tolerance. This tool is inspired by the IbexOpt branch and bound algorithm for constrained global optimization (NLP) and is endowed with an improved version of a relaxed intersection operator applied to observations. Experiments have been carried out on two different computer vision problems. They highlight a significant speedup w.r.t. Jaulin et al.’s interval method in 2D and 3D shape recognition problems (having three parameters). We have also obtained promising results on a stereo vision problem where the essential matrix (five parameters) is estimated exactly at a good accuracy in hours for models having a thousand points, a typical size for such problems.

[1]  Luc Jaulin,et al.  3D Reconstruction Using Interval Methods on the Kinect Device Coupled with an IMU , 2013 .

[2]  Jan-Michael Frahm,et al.  USAC: A Universal Framework for Random Sample Consensus , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Richard I. Hartley,et al.  Global Optimization through Searching Rotation Space and Optimal Estimation of the Essential Matrix , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[5]  Pierre Hansen,et al.  A reliable affine relaxation method for global optimization , 2010, 4OR.

[6]  Eric Walter,et al.  Guaranteed robust nonlinear minimax estimation , 2002, IEEE Trans. Autom. Control..

[7]  Lars Petersson,et al.  Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Correspondence , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[8]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[9]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[10]  Frédéric Messine Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution de problèmes avec contraintes , 1997 .

[11]  Gilles Trombettoni,et al.  Inner Regions and Interval Linearizations for Global Optimization , 2011, AAAI.

[12]  Gilles Trombettoni,et al.  Adaptive constructive interval disjunction: algorithms and experiments , 2015, Constraints.

[13]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Gilles Trombettoni,et al.  Upper bounding in inner regions for global optimization under inequality constraints , 2014, J. Glob. Optim..

[15]  Marc Pollefeys,et al.  Globally Optimal Inlier Set Maximization with Unknown Rotation and Focal Length , 2014, ECCV.

[16]  Keith Marzullo,et al.  Masking failures of multidimensional sensors , 1991, [1991] Proceedings Tenth Symposium on Reliable Distributed Systems.

[17]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[18]  Lionel Moisan,et al.  Fundamental Matrix of a Stereo Pair, with A Contrario Elimination of Outliers , 2016, Image Process. Line.

[19]  Gilles Trombettoni,et al.  Node selection strategies in interval Branch and Bound algorithms , 2016, J. Glob. Optim..

[20]  Luc Jaulin,et al.  Contractor programming , 2009, Artif. Intell..

[21]  Dieter Fox,et al.  Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation , 2010, Int. J. Robotics Res..

[22]  Andrea Fusiello,et al.  Globally convergent autocalibration using interval analysis , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Anders P. Eriksson,et al.  Efficient Globally Optimal Consensus Maximisation with Tree Search , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Jiaolong Yang,et al.  Optimal Essential Matrix Estimation via Inlier-Set Maximization , 2014, ECCV.

[25]  Gilles Trombettoni,et al.  Improving a Constraint Programming Approach for Parameter Estimation , 2015, ICTAI.

[26]  Luc Jaulin,et al.  Image Shape Extraction using Interval Methods , 2009 .

[27]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[28]  Hélène Collavizza,et al.  Comparing Partial Consistencies , 1999, Reliab. Comput..

[29]  Reinhard Klein,et al.  Efficient RANSAC for Point‐Cloud Shape Detection , 2007, Comput. Graph. Forum.

[30]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[31]  Thierry Marchant,et al.  The dirty dozen of 4OR , 2015, 4OR.

[32]  Gilles Trombettoni,et al.  Q-Intersection Algorithms for Constraint-Based Robust Parameter Estimation , 2014, AAAI.

[33]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.