Attentional Focus Modulated by Mesothalamic Dopamine: Consequences in Parkinson’s Disease and Attention Deficit Hyperactivity Disorder

In this work, we propose a mathematical model that describes how the mesothalamic dopamine pathway modulates the attentional focus via the thalamocortical loop, and how mesothalamic dopamine alterations can promote inattention symptoms in patients with Parkinson’s disease (PD) and attention deficit hyperactivity disorder (ADHD). We model the thalamocortical loop with a neuronal network where each thalamic neuron is described by a system of coupled differential equations reflecting neurophysiological properties. The computational simulations reflect neurochemical features of PD and ADHD. Our results suggest that the mesothalamic dopamine hypoactivity causes difficulties in attentional shifting. Conversely, the mesothalamic dopamine hyperactivity hinders the attentional focus consolidation. Furthermore, regardless of the amount of mesothalamic dopamine activity, the mesocortical dopamine hypoactivity leads to loss of attentional focus. Finally, we identify a unique neuronal mechanism underlying attention deficits in PD and ADHD and relate different inattention symptoms in ADHD to different dopaminergic levels in the brain circuit modeled.

[1]  F. Hollander,et al.  Lecture Notes of the Les Houches Summer School 2005 , 2006 .

[2]  Ronald J. MacGregor,et al.  Neural and brain modeling , 1987 .

[3]  L. Henriksen,et al.  Striatal dysfunction in attention deficit and hyperkinetic disorder. , 1989, Archives of neurology.

[4]  P. Renshaw,et al.  Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls , 1997, Neurology.

[5]  R W Guillery,et al.  Structure and connections of the thalamic reticular nucleus: Advancing views over half a century , 2003, The Journal of comparative neurology.

[6]  D. Silva,et al.  Transtorno de Déficit de Atenção/Hiperatividade , 2011 .

[7]  Linda J. Lanyon,et al.  A model of active visual search with object-based attention guiding scan paths , 2004, Neural Networks.

[8]  Martin Sarter,et al.  Cortical cholinergic transmission and cortical information processing in schizophrenia. , 2005, Schizophrenia bulletin.

[9]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[10]  Yu-Shin Ding,et al.  Therapeutic Doses of Oral Methylphenidate Significantly Increase Extracellular Dopamine in the Human Brain , 2001, The Journal of Neuroscience.

[11]  R. Barkley Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. , 1997, Psychological bulletin.

[12]  P. Seeman,et al.  Anti-hyperactivity medication: methylphenidate and amphetamine , 1998, Molecular Psychiatry.

[13]  J. Milton Dynamics of small neural populations , 1996 .

[14]  L. D. de Carvalho Modeling the thalamocortical loop. , 1994, International journal of bio-medical computing.

[15]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[16]  B. Segee,et al.  Methods in Neuronal Modeling: from Ions to Networks, 2nd Edition , 1999, Computing in Science & Engineering.

[17]  Klaus Tatsch,et al.  Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography , 2000, Neuroscience Letters.

[18]  Gustavo Deco,et al.  Neurons and the synaptic basis of the fMRI signal associated with cognitive flexibility , 2005, NeuroImage.

[19]  A. Levey,et al.  Nigrostriatal collaterals to thalamus degenerate in parkinsonian animal models , 2001, Annals of neurology.

[20]  A. Lees Cognitive Deficits in Parkinson’s Disease , 1985 .

[21]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[22]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[23]  M. Sarter,et al.  D2-like receptors in nucleus accumbens negatively modulate acetylcholine release in prefrontal cortex , 2007, Neuropharmacology.

[24]  D. Erlij,et al.  Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus , 2004, Neuropharmacology.

[25]  L A de Carvalho,et al.  A computational model for the neurobiological substrates of visual attention. , 1995, International journal of bio-medical computing.

[26]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[27]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[28]  A. Smit,et al.  Synapse Formation between Central Neurons Requires Postsynaptic Expression of the MEN1 Tumor Suppressor Gene , 2001, The Journal of Neuroscience.

[29]  École d'été de physique théorique,et al.  Methods and models in neurophysics = Méthodes et modèles en neurophysique : École d'été de physique des Houches, session LXXX, 28 July-29 August 2003, NATO Advanced Study Institute, École thématique du CNRS , 2005 .

[30]  F. Hamker The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. , 2005, Cerebral cortex.

[31]  Frank van der Velde,et al.  Using a recurrent network to bind form, color and position into a unified percept , 2001, Neurocomputing.

[32]  M. Ernst,et al.  High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. , 1999, The American journal of psychiatry.

[33]  de Carvalho La Modeling the thalamocortical loop. , 1994 .

[34]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[35]  F. Castellanos,et al.  Toward a Pathophysiology of Attention-Deficit/Hyperactivint Disorder , 1997, Clinical pediatrics.

[36]  R. Wise Brain Reward Circuitry Insights from Unsensed Incentives , 2002, Neuron.

[37]  Gustavo Deco,et al.  The neuronal dynamics underlying cognitive flexibility in set shifting tasks , 2007, Journal of Computational Neuroscience.

[38]  M. Sarter,et al.  The cognitive neuroscience of sustained attention: where top-down meets bottom-up , 2001, Brain Research Reviews.

[39]  R. J. MacGregor,et al.  A model for repetitive firing in neurons , 2004, Kybernetik.

[40]  L. Henriksen,et al.  Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. , 1984, Archives of neurology.

[41]  J. Kennedy,et al.  Genetics of childhood disorders: XXIII. ADHD, Part 7: The serotonin system. , 2001, Journal of the American Academy of Child and Adolescent Psychiatry.

[42]  Albert Gjedde,et al.  Methylphenidate-evoked changes in striatal dopamine correlate with inattention and impulsivity in adolescents with attention deficit hyperactivity disorder , 2005, NeuroImage.