Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams

In the present paper we study a natural nonlinear generalization of Timoshenko beam model and show that it can describe the homogenized deformation energy of a 1D continuum with a simple microstructure. We prove the well posedness of the corresponding variational problem in the case of a generic end load, discuss some regularity issues and evaluate the critical load. Moreover, we generalize the model so as to include an additional rotational spring in the microstructure. Finally, some numerical simulations are presented and discussed.

[1]  A. Hamdouni,et al.  An asymptotic linear thin-walled rod model coupling twist and bending , 2011 .

[2]  Ivan Giorgio,et al.  Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations , 2016 .

[3]  David J. Steigmann,et al.  Koiter’s Shell Theory from the Perspective of Three-dimensional Nonlinear Elasticity , 2013 .

[4]  Kenneth S. Krane The Pendulum: A Case Study in Physics , 2006 .

[5]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[6]  C. Glocker,et al.  Determination of the Transverse Shear Stress in an Euler‐Bernoulli Beam Using Non‐Admissible Virtual Displacements , 2014 .

[7]  MICROPOLAR LINEARLY ELASTIC RODS , 2009 .

[8]  Francesco dell’Isola,et al.  Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models , 2016 .

[9]  A. Pipkin,et al.  Some developments in the theory of inextensible networks , 1980 .

[10]  Ivan Giorgio,et al.  Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures , 2016 .

[11]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[12]  Aziz Hamdouni,et al.  An asymptotic non-linear model for thin-walled rods with strongly curved open cross-section , 2006 .

[13]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[14]  Luca Placidi,et al.  A Review on Models for the 3D Statics and 2D Dynamics of Pantographic Fabrics , 2017 .

[15]  S. Müller,et al.  A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity , 2004 .

[16]  Simon R. Eugster,et al.  Geometric Continuum Mechanics and Induced Beam Theories , 2015 .

[17]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[18]  A. Pipkin,et al.  PLANE TRACTION PROBLEMS FOR INEXTENSIBLE NETWORKS , 1981 .

[19]  A. Luongo,et al.  Flexural-Torsional Flutter and Buckling of Braced Foil Beams under a Follower Force , 2017 .

[20]  Ronald S. Rivlin Networks of Inextensible Cords , 1997 .

[21]  Victor A. Eremeyev,et al.  Deformation analysis of functionally graded beams by the direct approach , 2012 .

[23]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[24]  E. Presutti,et al.  Fourier Law, Phase Transitions and the Stationary Stefan Problem , 2010, 1009.4652.

[25]  Interface Instability under Forced Displacements , 2006 .

[26]  Angelo Luongo,et al.  Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads , 2013 .

[27]  Angelo Luongo,et al.  BIFURCATION ANALYSIS OF DAMPED VISCO-ELASTIC PLANAR BEAMS UNDER SIMULTANEOUS GRAVITATIONAL AND FOLLOWER FORCES , 2012 .

[28]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[29]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[30]  A variational model for linearly elastic micropolar plate-like bodies , 2008 .

[31]  A. Goriely,et al.  Nonlinear Euler buckling , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  David J. Steigmann,et al.  Equilibrium of elastic nets , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[33]  Angelo Luongo,et al.  Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams , 2007 .

[34]  F. dell’Isola,et al.  Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Alessandro Della Corte,et al.  Equilibria of a clamped Euler beam (Elastica) with distributed load: large deformations , 2016, 1610.07814.

[36]  Angelo Luongo,et al.  Mathematical Models of Beams and Cables: Luongo/Mathematical Models of Beams and Cables , 2013 .

[37]  Demeter G. Fertis,et al.  Nonlinear Structural Engineering: With Unique Theories and Methods to Solve Effectively Complex Nonlinear Problems , 2007 .

[38]  Pierre Seppecher,et al.  Asymptotics of a non-planar rod in non-linear elasticity , 2006, Asymptot. Anal..

[39]  Victor A. Eremeyev,et al.  On vectorially parameterized natural strain measures of the non-linear Cosserat continuum , 2009 .

[40]  E. Turco,et al.  Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations , 2016 .

[41]  R. Kannan,et al.  Advanced Analysis: On The Real Line , 1996 .

[42]  Giuseppe Ruta,et al.  A beam model for the flexural–torsional buckling of thin-walled members with some applications , 2008 .

[43]  Necessary conditions and non-existence results for autonomous nonconvex variational problems , 2007 .

[44]  A. McBride,et al.  Geometrically Nonlinear Continuum Thermomechanics with Surface Energies Coupled to Diffusion , 2011 .

[45]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[46]  Ivan Giorgio,et al.  Can a Hencky-Type Model Predict the Mechanical Behaviour of Pantographic Lattices? , 2017 .

[47]  S. Forest Mechanics of Cosserat media An introduction , 2005 .

[48]  Wojciech Pietraszkiewicz,et al.  The Nonlinear Theory of Elastic Shells with Phase Transitions , 2004 .

[49]  John M. Ball,et al.  One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation , 1985 .

[50]  Francesco dell’Isola,et al.  Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response , 2015 .

[51]  S. Eugster Augmented Nonlinear Beam Theories , 2015 .

[52]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[53]  Emilio Turco,et al.  Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields , 2016 .

[54]  D. Steigmann A Concise Derivation of Membrane Theory from Three-Dimensional Nonlinear Elasticity , 2009 .

[55]  F. J. Plantema,et al.  Sandwich Construction: The Bending and Buckling of Sandwich Beams, Plates and Shells , 1966 .