Adaptive Vehicle Routing for Risk-averse Travelers☆

This paper develops an adaptive navigation approach for risk-averse travelers in a stochastic network while considering on-time arrival reliability, in which travelers’ final utility is measured with the prospect theory. Instead of finding a route or a policy that simply minimizes the expected travel time or maximizes the on-time arrival reliability, this model optimizes the expected prospect of potential routing alternatives while ensuring that both the expected en route travel time and resultant on-time arrival reliability are acceptable to the traveler. Moreover, the formulation is designed to incorporate various sources of information and real time traffic states in an adaptive routing framework, offering flexibility to incorporate different information types deemed useful in future extensions.

[1]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[2]  Martin J. Beckmann Traffic congestion and what to do about it , 2013 .

[3]  H. W. Corley,et al.  Shortest paths in networks with vector weights , 1985 .

[4]  M. Douglas Risk Acceptability According to the Social Sciences , 1986 .

[5]  Tito Homem-de-Mello,et al.  Optimal Path Problems with Second-Order Stochastic Dominance Constraints , 2012 .

[6]  Zhong Zhou,et al.  The [alpha]-reliable Mean-Excess Traffic Equilibrium Model with Stochastic Travel Times , 2010 .

[7]  Hong Kam Lo,et al.  Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion , 2006 .

[8]  Ronald Prescott Loui,et al.  Optimal paths in graphs with stochastic or multidimensional weights , 1983, Commun. ACM.

[9]  P. Slovic Perception of risk. , 1987, Science.

[10]  Horst W. Hamacher,et al.  Multiple objective minimum cost flow problems: A review , 2007, Eur. J. Oper. Res..

[11]  Amir Azaron,et al.  Reliability function of a class of time-dependent systems with standby redundancy , 2005, Eur. J. Oper. Res..

[12]  Elise Miller-Hooks,et al.  Adjustable Preference Path Strategies for Use in Multicriteria, Stochastic, and Time-Varying Transportation Networks , 2005 .

[13]  Yueyue Fan,et al.  Optimal Routing for Maximizing the Travel Time Reliability , 2006 .

[14]  Hong Kam Lo,et al.  Adaptive Vehicle Navigation via En Route Stochastic Traffic Information , 2010 .

[15]  Carlos F. Daganzo,et al.  TRANSPORTATION AND TRAFFIC THEORY , 1993 .

[16]  Y. Nie,et al.  Shortest path problem considering on-time arrival probability , 2009 .

[17]  William H. K. Lam,et al.  New technology and the modeling of risk-taking behavior in congested road networks , 2004 .

[18]  D. Shier,et al.  An empirical investigation of some bicriterion shortest path algorithms , 1989 .

[19]  J. Pratt RISK AVERSION IN THE SMALL AND IN THE LARGE11This research was supported by the National Science Foundation (grant NSF-G24035). Reproduction in whole or in part is permitted for any purpose of the United States Government. , 1964 .

[20]  Qingquan Li,et al.  Reliable Shortest Path Problems in Stochastic Time-Dependent Networks , 2014, J. Intell. Transp. Syst..

[21]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[22]  Josef Hadar,et al.  Rules for Ordering Uncertain Prospects , 1969 .

[23]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[24]  Agachai Sumalee,et al.  A network equilibrium model with travellers’ perception of stochastic travel times , 2009 .

[25]  Hong K. Lo,et al.  Doubly uncertain transportation network: Degradable capacity and stochastic demand , 2008, Eur. J. Oper. Res..

[26]  Songsak Sriboonchitta,et al.  Stochastic Dominance and Applications to Finance, Risk and Economics , 2017 .

[27]  Michael G.H. Bell Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation , 2009 .

[28]  Hong Kam Lo,et al.  Punctuality-based route and departure time choice , 2014 .

[29]  Xing Wu,et al.  Modeling Heterogeneous Risk-Taking Behavior in Route Choice: A Stochastic Dominance Approach , 2011 .

[30]  A. Sumalee,et al.  Network Equilibrium under Cumulative Prospect Theory and Endogenous Stochastic Demand and Supply , 2009 .

[31]  Hong Kam Lo,et al.  Equilibrium Trip Scheduling in Congested Traffic under Uncertainty , 2009 .

[32]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[33]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[34]  David Eppstein,et al.  Finding the k Shortest Paths , 1999, SIAM J. Comput..

[35]  V. Bawa OPTIMAL, RULES FOR ORDERING UNCERTAIN PROSPECTS+ , 1975 .

[36]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[37]  Horst W. Hamacher,et al.  Algorithms for time-dependent bicriteria shortest path problems , 2006, Discret. Optim..

[38]  Zhong Zhou,et al.  A Stochastic α-reliable Mean-excess Traffic Equilibrium Model with Probabilistic Travel Times and Perception Errors , 2009 .

[39]  Hong Kam Lo,et al.  Network with degradable links: capacity analysis and design , 2003 .

[40]  Vernon L. Smith Book Review:Essays in the Theory of Risk-Bearing. Kenneth J. Arrow , 1974 .

[41]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[42]  P. Slovic,et al.  Risk Perception and Affect , 2006 .

[43]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .