Calcium Signaling Protocols

Part I. General. Fluorescent Measurement of [Ca2+]c: Basic Practical Considerations, Alec W. M. Simpson. Measurement of [Ca2+]i in Whole Cell Suspensions Using Fura-2, Robert A. Hirst, Charlotte Harrison, Kazuyoshi Hirota, and David G. Lambert. Measurement of [Ca2+]i in Cell Suspensions Using Indo-1, Adriaan Nelemans. Part II. Specialist Measurement Systems. Confocal Microscopy: Theory and Applications, Laura C. Mongan, Joanne Gormally, Andrew R. D. Hubbard, Christopher d'Lacey, and Colin D. Ockleford. Measurement of Intracellular Calcium Concentration Using Confocal Microscopy, Carmen Perez-Terzic, Marisa Jaconi, and Lisa Stehno-Bittel. Single Cell and Subcellular Measurement of Intracellular Ca2+ Concentration ([Ca2+]i), Anthony J. Morgan and Andrew P. Thomas. Measurement of [Ca2+] Using the Fluorometric Imaging Plate Reader (FLIPR), Elaine Sullivan, Emily M. Tucker, and Ian L. Dale. Part III. Nonelectrophysiological Measurement of Ca2+ Channel Activity. Measurement of Ca2+ Entry Using 45Ca2+, Mercedes Villarroya, Manuela G. Lopez, Maria F. Cano-Abad, and Antonio G. Garcia. Measurement of [3H]PN200-110 and [125I]w-Contoxin MVIIA Binding, Kazuyoshi Hirota and David G. Lambert. Part IV. Measurement of Ins(1,4,5)P3 and Ca2+ Release From Intracellular Stores. Measurement of Inositol (Poly)phosphate Formation Using [3H]Inositol Labeling Protocols in Permeabilized Cells, Philip Swigart and Shamshad Cockcroft. Measurement of Inositol(1,4,5)triphosphate Using a Stereospecific Radioreceptor Mass Assay, Darren Smart. Measurement of Calcium Fluxes in Permeabilized Cells Using a 45Ca2+ Uptake and Release Assay, Robert A. Wilcox. Microinjection of myo-Inositol(1,4,5)triphosphate and Other Calcium-Mobilizing Agents into Intact Adherent Cells, Robert A. Wilcox, Ian D. Forsythe, and Terence J. McCann. Photolysis of Caged Calcium Using a Low-Cost Flash Unit, Gommert A. van Koeveringe and Ron van Mastrigt. Measurement of Ca2+ Flux Through Ins(1,4,5)P3 Receptor - Ca2+ Channels in Lipid Bilayers ("Dip-Tip" and "Schindler" Methodology), Edwin C. Thrower. Continuous Fluorescent Monitoring of Cellular Calcium Fluxes: A Novel Perfusion System for the Investigation of Inosito(1,4,5)trisphosphate-Dependent Quantal Calcium Release Using Immobilized, Electropermeabilized Cells, Robert A. Wilcox and James Strupish. Measurement of Free [Ca2+] Changes in Agonist-Sensitive Internal Stores Using Compartmentalized Fluorescent Indicators, Aldebaran M. Hofer. Part V. Specialist Measurement Techniques. Measurement of [Ca2+]i in Smooth Muscle Strips Using Front-Surface Fluorimetry, Hideo Kanaide. Measurement of Calcium and Movement in Heart Cells, Leong L. Ng and Paulene A. Quinn. Simultaneous Analysis of Intracellular pH and Ca2+ from Cell Populations, Raul Martinez-Zaguilan, Linda S. Tompkins, Robert J. Gillies, and Ronald M. Lynch. Measurement of Cytosolic-Free Ca2+ in Plant Tissue, Martin R. McAinsh and Irina Staxen. Part VI. Ca2+ Sensitive Targets. Assay and Purification of Calmodulin-Dependent Protein Kinase, Rakesh Kakkar and Rajendra K. Sharma. Measurement of Ca2+-ATPase Activity (in PMCA and SERCA1), Danuta Kosk-Kosicka. Index.

[1]  A. Elliott,et al.  Imaging of Intracellular Calcium Stores in Individual Permeabilized Pancreatic Acinar Cells , 1996, The Journal of Biological Chemistry.

[2]  A. Hertog,et al.  α-Adrenoceptor regulation of inositol phosphates, internal calcium and membrane current in DDT1 MF-2 smooth muscle cells , 1990 .

[3]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[4]  B. Conklin,et al.  Substitution of three amino acids switches receptor specificity of Gqα to that of Giα , 1993, Nature.

[5]  K. Mikoshiba,et al.  Inositol 1,4,5‐Trisphosphate Receptor‐Mediated Ca2+ Signaling in the Brain , 1995, Journal of neurochemistry.

[6]  I. Pastan,et al.  Fluorescent cellular indicators are extruded by the multidrug resistance protein. , 1993, The Journal of biological chemistry.

[7]  S. Pentyala,et al.  Structure, function, and control of phosphoinositide-specific phospholipase C. , 2000, Physiological reviews.

[8]  F S Fay,et al.  Ca2+ imaging in single living cells: theoretical and practical issues. , 1990, Cell calcium.

[9]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[10]  Manuela G. López,et al.  (+)‐PN200‐l 10 and Ouabain Binding Sites in Purified Bovine Adrenomedullary Plasma Membranes and Chromaffin Cells , 1989, Journal of neurochemistry.

[11]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Sachs,et al.  Differential effects of carbachol on calcium entry and release in CHO cells expressing the m3 muscarinic receptor. , 1994, Cell calcium.

[13]  R. Tsien,et al.  Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. , 2000, Methods in enzymology.

[14]  F. Di Virgilio,et al.  Inhibition of Fura-2 sequestration and secretion with organic anion transport blockers. , 1990, Cell calcium.

[15]  N. Allbritton,et al.  Source of nuclear calcium signals. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. Meyer,et al.  Green Fluorescent Protein (GFP)-tagged Cysteine-rich Domains from Protein Kinase C as Fluorescent Indicators for Diacylglycerol Signaling in Living Cells , 1998, The Journal of cell biology.

[17]  P. Várnai,et al.  Phosphatidylinositol 3-Kinase-dependent Membrane Association of the Bruton’s Tyrosine Kinase Pleckstrin Homology Domain Visualized in Single Living Cells* , 1999, The Journal of Biological Chemistry.

[18]  R Y Tsien,et al.  Practical design criteria for a dynamic ratio imaging system. , 1990, Cell calcium.

[19]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[20]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[21]  P. Cobbold,et al.  Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes , 1986, Nature.

[22]  D. Cooper,et al.  Live-cell imaging of cAMP dynamics , 2008, Nature Methods.

[23]  T. Rink,et al.  Elevation of pHi is not an essential step in calcium mobilisation in fura‐2‐loaded human platelets , 1987, FEBS letters.

[24]  G. Rutter,et al.  Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon , 1999, Current Biology.

[25]  Manuela G. López,et al.  Dotarizine versus flunarizine as calcium antagonists in chromaffin cells , 1995, British journal of pharmacology.

[26]  K. Hirota,et al.  Do local anaesthetics interact with dihydropyridine binding sites on neuronal L-type Ca2+ channels? , 1997, British journal of anaesthesia.

[27]  T. Hallam,et al.  Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. , 1989, The Journal of biological chemistry.

[28]  R. Horn,et al.  Muscarinic activation of ionic currents measured by a new whole-cell recording method , 1988, The Journal of general physiology.

[29]  M. Berridge,et al.  Multiple, coordinated Ca2+ ‐release events underlie the inositol trisphosphate‐induced local Ca2+ spikes in mouse pancreatic acinar cells. , 1996, The EMBO journal.

[30]  E Neher,et al.  Sodium and calcium channels in bovine chromaffin cells , 1982, The Journal of physiology.

[31]  G. Bernardi,et al.  Differential Inhibition by Riluzole, Lamotrigine, and Phenytoin of Sodium and Calcium Currents in Cortical Neurons: Implications for Neuroprotective Strategies , 1997, Experimental Neurology.

[32]  N. Standen,et al.  Reduced effectiveness of HMR 1098 in blocking cardiac sarcolemmal K(ATP) channels during metabolic stress. , 2005, Journal of molecular and cellular cardiology.

[33]  T. Machen,et al.  Technique for in situ measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Hodgkin,et al.  Movements of labelled calcium in squid giant axons , 1957, The Journal of physiology.

[35]  M. Brini,et al.  Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. , 1995, The EMBO journal.

[36]  M. Berridge,et al.  Capacitative calcium entry. , 1995, The Biochemical journal.

[37]  T. Rink,et al.  Low concentrations of the stable prostaglandin endoperoxide U44069 stimulate shape change in quin2‐loaded platelets without a measurable increase in [Ca2+]i , 1986, FEBS letters.

[38]  A. Garcı́a,et al.  Membrane-mediated effects of the steroid 17-alpha-estradiol on adrenal catecholamine release. , 1991, The Journal of pharmacology and experimental therapeutics.

[39]  D. Schild,et al.  Laser scanning microscopy and calcium imaging. , 1996, Cell calcium.

[40]  B. Neagle,et al.  FLIPR: A New Instrument for Accurate, High Throughput Optical Screening , 1996 .

[41]  J. Rae,et al.  Constructing a patch clamp setup. , 1992, Methods in enzymology.

[42]  C. J. Chapman,et al.  Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. , 1995, Biophysical journal.

[43]  Tobias Meyer,et al.  Protein Kinase C as a Molecular Machine for Decoding Calcium and Diacylglycerol Signals , 1998, Cell.

[44]  O. Gerasimenko,et al.  ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope , 1995, Cell.

[45]  N. Standen,et al.  SUR2A C‐terminal fragments reduce KATP currents and ischaemic tolerance of rat cardiac myocytes , 2004, The Journal of physiology.

[46]  R. Holz,et al.  Relationship Between Ca2+ Uptake and Catecholamine Secretion in Primary Dissociated Cultures of Adrenal Medulla , 1982, Journal of neurochemistry.

[47]  J. Hsuan,et al.  The yeast and mammalian isoforms of phosphatidylinositol transfer protein can all restore phospholipase C-mediated inositol lipid signaling in cytosol-depleted RBL-2H3 and HL-60 cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Kilpatrick,et al.  Calcium Uptake and Catecholamine Secretion by Cultured Bovine Adrenal Medulla Cells , 1982, Journal of neurochemistry.

[49]  M. Blaustein,et al.  Spatially and Functionally Distinct Ca2+ Stores in Sarcoplasmic and Endoplasmic Reticulum , 1997, Science.

[50]  R. Miller,et al.  Characteristics of a human N-type calcium channel expressed in HEK293 cells , 1995, Neuropharmacology.

[51]  R. Tsien,et al.  Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. , 1989, The Journal of biological chemistry.

[52]  M. T. de la Fuente,et al.  The nicotinic acetylcholine receptor of the bovine chromaffin cell, a new target for dihydropyridines. , 1993, European journal of pharmacology.

[53]  R Y Tsien,et al.  Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator , 1982, The Journal of cell biology.

[54]  H. Grabsch,et al.  Structural diversity of the voltage‐dependent Ca2+ channel α1E‐subunit , 1998 .

[55]  Tullio Pozzan,et al.  Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin , 1992, Nature.

[56]  C. Lawrence,et al.  A Na+-activated K+ current (IK,Na) is present in guinea-pig but not rat ventricular myocytes , 1999, Pflügers Archiv.

[57]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .

[58]  R. Challiss,et al.  The use of translocating fluorescent biosensors for real-time monitoring of GPCR-mediated signaling events. , 2011, Methods in molecular biology.

[59]  D. Agard Optical sectioning microscopy: cellular architecture in three dimensions. , 1984, Annual review of biophysics and bioengineering.

[60]  M. T. de la Fuente,et al.  Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. , 1997, European journal of pharmacology.

[61]  R. Silver,et al.  Intracellular ion imaging using fluorescent dyes: artefacts and limits to resolution , 1992, Pflügers Archiv.

[62]  A. den Hertog,et al.  P2 purinoceptor-mediated inositol phosphate formation in relation to cytoplasmic calcium in DDT1 MF-2 smooth muscle cells. , 1990, European journal of pharmacology.

[63]  G. Tsujimoto,et al.  Real-Time Optical Monitoring of Ligand-Mediated Internalization of α1b-Adrenoceptor with Green Fluorescent Protein , 1998 .

[64]  J. Kendall,et al.  Targeting aequorin to the endoplasmic reticulum of living cells. , 1992, Biochemical and biophysical research communications.

[65]  C. Wollheim,et al.  Dynamic pacing of cell metabolism by intracellular Ca2+ transients. , 1994, The Journal of biological chemistry.

[66]  Bertil Hille,et al.  Modulation of ion-channel function by G-protein-coupled receptors , 1994, Trends in Neurosciences.

[67]  R. Tsien,et al.  Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin , 1994, Nature.

[68]  T. J. Keating,et al.  Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells , 1992, The Journal of cell biology.

[69]  M. Spedding,et al.  Classification of calcium channels and the sites of action of drugs modifying channel function. , 1992, Pharmacological reviews.

[70]  F S Fay,et al.  Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. , 1995, Science.

[71]  B. Hille,et al.  Fluorescence changes reveal kinetic steps of muscarinic receptor–mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels , 2009, The Journal of general physiology.

[72]  R. Challiss,et al.  Differential Regulation of Muscarinic Acetylcholine Receptor-sensitive Polyphosphoinositide Pools and Consequences for Signaling in Human Neuroblastoma Cells* , 1998, The Journal of Biological Chemistry.

[73]  I. Batty,et al.  Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization. , 1988, Biochemical and biophysical research communications.

[74]  F. Di Virgilio,et al.  Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. , 1988, The Biochemical journal.

[75]  O. Petersen,et al.  The thapsigargin-evoked increase in [Ca2+]i involves an InsP3-dependent Ca2+ release process in pancreatic acinar cells , 1994, Pflügers Archiv.

[76]  O. Shimomura,et al.  Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. , 1989, The Biochemical journal.

[77]  R. Tsien A non-disruptive technique for loading calcium buffers and indicators into cells , 1981, Nature.

[78]  D. Bers Cardiac excitation–contraction coupling , 2002, Nature.

[79]  F. Döring,et al.  Endogenous calcium channels in human embryonic kidney (HEK293) cells , 1996, British journal of pharmacology.

[80]  G. Sonek,et al.  Continuous Wave Diode Laser Induced Two-Photon Fluorescence Excitation of Three Calcium Indicators , 1997 .

[81]  D. Lambert,et al.  Halothane and isoflurane enhance basal and carbachol-stimulated inositol(1,4,5)triphosphate formation in SH-SY5Y human neuroblastoma cells. , 1994, Biochemical pharmacology.

[82]  R Y Tsien,et al.  Photochemically generated cytosolic calcium pulses and their detection by fluo-3. , 1989, The Journal of biological chemistry.

[83]  Susan S. Taylor,et al.  A genetically encoded, fluorescent indicator for cyclic AMP in living cells , 1999, Nature Cell Biology.

[84]  Richard J. Miller Calcium channels prove to be a real headache , 1997, Trends in Neurosciences.

[85]  Lawrence M. Lifshitz,et al.  Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. , 1998, Science.

[86]  A. Persechini,et al.  Novel fluorescent indicator proteins for monitoring free intracellular Ca2+. , 1997, Cell calcium.

[87]  B. Chronwall,et al.  Rapid simultaneous estimation of intracellular calcium and pH. , 1994, Methods in cell biology.

[88]  S. Fujita,et al.  Differences in features of calcium transients between the nucleus and the cytosol in cultured heart muscle cells: analyzed by confocal microscopy. , 1995, Cell calcium.

[89]  M. Poenie,et al.  Near-membrane [Ca2+] transients resolved using the Ca2+ indicator FFP18. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Manuela G. López,et al.  Separation of two pathways for calcium entry into chromaffin cells , 1991, British journal of pharmacology.

[91]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[92]  R. Nuccitelli,et al.  An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis , 1985, The Journal of cell biology.

[93]  M. Ferenczi,et al.  Calcium release from cardiac sarcoplasmic reticulum induced by photorelease of calcium or Ins(1,4,5)P3. , 1990, The American journal of physiology.

[94]  E. Neher,et al.  Calcium gradients and buffers in bovine chromaffin cells. , 1992, The Journal of physiology.

[95]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .

[96]  H. Lux,et al.  Kinetics and selectivity of a low‐voltage‐activated calcium current in chick and rat sensory neurones. , 1987, The Journal of physiology.

[97]  F S Fay,et al.  Intracellular calibration of the fluorescent calcium indicator Fura-2. , 1990, Cell calcium.

[98]  Peter Lipp,et al.  Ratiometric confocal Ca2+-measurements with visible wavelength indicators in isolated cardiac myocytes , 1993 .

[99]  W. Sadee,et al.  Phosphatidylinositol turnover in neuroblastoma cells: Regulation by bradykinin, acetylcholine, but not μ- and δ-opioid receptors , 1986, Neuroscience Letters.

[100]  R A Levis,et al.  Low-noise patch-clamp techniques. , 1998, Methods in enzymology.

[101]  M. A. Moro,et al.  Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. , 1990, Analytical biochemistry.

[102]  D Thomas,et al.  A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. , 2000, Cell calcium.

[103]  D. Lovinger,et al.  Rat group I metabotropic glutamate receptors inhibit neuronal Ca2+ channels via multiple signal transduction pathways in HEK 293 cells. , 1998, Journal of neurophysiology.

[104]  M. Berridge,et al.  Functional InsP3 receptors that may modulate excitation–contraction coupling in the heart , 2000, Current Biology.

[105]  O. K. Langley,et al.  Characterization of Two Chromaffin Cell Populations Isolated from Bovine Adrenal Medulla , 1991, Journal of neurochemistry.

[106]  G B Willars,et al.  Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. , 2001, The Biochemical journal.

[107]  F. Sala,et al.  Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels , 1984, Nature.

[108]  E. Lakatta,et al.  Excitation-contraction coupling in heart: new insights from Ca2+ sparks. , 1996, Cell calcium.

[109]  A. Persechini,et al.  Detection in Living Cells of Ca2+-dependent Changes in the Fluorescence Emission of an Indicator Composed of Two Green Fluorescent Protein Variants Linked by a Calmodulin-binding Sequence , 1997, The Journal of Biological Chemistry.

[110]  J. Bossu,et al.  Effect of internal calcium concentration on calcium currents in rat sensory neurones , 1986, Pflügers Archiv European Journal of Physiology.

[111]  J. E. Melvin,et al.  Membrane potential regulates Ca2+ uptake and inositol phosphate generation in rat sublingual mucous acini. , 1993, Cell calcium.

[112]  E. Whitham,et al.  Muscarinic receptors, phosphoinositide metabolism and intracellular calcium in neuronal cells , 1992, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[113]  N. Standen,et al.  Visualizing the temporal effects of vasoconstrictors on PKC translocation and Ca2+ signaling in single resistance arterial smooth muscle cells. , 2008, American journal of physiology. Cell physiology.

[114]  J. Reig,et al.  Separate Binding and Functional Sites for ω co‐Conotoxin and Nitrendipine Suggest Two Types of Calcium Channels in Bovine Chromaffin Cells , 1989, Journal of neurochemistry.

[115]  P. Cobbold,et al.  Fluorescence and bioluminescence measurement of cytoplasmic free calcium. , 1987, The Biochemical journal.

[116]  György Hajnóczky,et al.  Decoding of cytosolic calcium oscillations in the mitochondria , 1995, Cell.

[117]  J. McCarron,et al.  The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle. , 2009, Cell calcium.

[118]  D. Hedley,et al.  Constitutive expression of P-glycoprotein as a determinant of loading with fluorescent calcium probes. , 1994, Cytometry.

[119]  B. Herman,et al.  Assessment of Fura-2 for measurements of cytosolic free calcium. , 1990, Cell calcium.

[120]  W. Webb,et al.  Imaging [Ca2+]i dynamics during signal transduction. , 1990, Cell calcium.

[121]  K. Sanders,et al.  Regulation of smooth muscle excitation and contraction , 2008, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[122]  M. Berridge,et al.  Elementary and global aspects of calcium signalling. , 1997, The Journal of experimental biology.

[123]  T. Meyer,et al.  Elementary calcium-release units induced by inositol trisphosphate. , 1997, Science.

[124]  R. Floto,et al.  IgG-induced Ca2+ oscillations in differentiated U937 cells; a study using laser scanning confocal microscopy and co-loaded fluo-3 and fura-red fluorescent probes. , 1995, Cell calcium.

[125]  J. Putney,et al.  In situ imaging of agonist-sensitive calcium pools in AR4-2J pancreatoma cells. Evidence for an agonist- and inositol 1,4,5-trisphosphate-sensitive calcium pool in or closely associated with the nuclear envelope. , 1992, The Journal of biological chemistry.

[126]  S. Rees,et al.  G16 as a universal G protein adapter: implications for agonist screening strategies. , 1996, Trends in pharmacological sciences.

[127]  J. Benovic,et al.  Using green fluorescent proteins to study G-protein-coupled receptor localization and trafficking. , 2000, Trends in pharmacological sciences.

[128]  M. Berridge The AM and FM of calcium signalling , 1997, Nature.

[129]  J. Bossu,et al.  Depolarization elicits two distinct calcium currents in vertebrate sensory neurones , 1985, Pflügers Archiv.

[130]  B. Conklin,et al.  Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. , 1999, Analytical biochemistry.

[131]  J. McCarron,et al.  Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. , 2007, Cell calcium.

[132]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[133]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[134]  A. Tepikin,et al.  Acetylcholine-evoked increase in the cytoplasmic Ca2+ concentration and Ca2+ extrusion measured simultaneously in single mouse pancreatic acinar cells. , 1992, The Journal of biological chemistry.

[135]  L. Missiaen,et al.  Ca2+ homeostasis in vascular smooth muscle. , 1995, Journal of vascular research.

[136]  R Y Tsien,et al.  Calcium channels, stores, and oscillations. , 1990, Annual review of cell biology.

[137]  B. Livett Adrenal medullary chromaffin cells in vitro. , 1984, Physiological reviews.

[138]  T. Pozzan,et al.  Receptor-activated Ca2+ influx: how many mechanisms for how many channels? , 1994, Trends in pharmacological sciences.

[139]  D. Smart,et al.  Activation of phospholipase C in SH‐SY5Y neuroblastoma cells by potassium‐induced calcium entry , 1995, British journal of pharmacology.

[140]  K. Sanders,et al.  Regulation of ion channels in smooth muscles by calcium. , 1996, The American journal of physiology.

[141]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[142]  I. Módy,et al.  Whole-cell voltage-clamp recordings in granule cells acutely isolated from hippocampal slices of adult or aged rats , 1989, Neuroscience Letters.

[143]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[144]  R. London,et al.  A fluorescent indicator for measuring cytosolic free magnesium. , 1989, The American journal of physiology.

[145]  D. Lambert,et al.  μ‐Opioid Receptor Stimulation of Inositol (1,4,5)Trisphosphate Formation via a Pertussis Toxin‐Sensitive G Protein , 1994, Journal of neurochemistry.

[146]  R Y Tsien,et al.  New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. , 1980, Biochemistry.

[147]  Manuela G. López,et al.  Drastic facilitation by α‐latrotoxin of bovine chromaffin cell exocytosis without measurable enhancement of Ca2+ entry or [Ca2+]i , 1997, The Journal of physiology.

[148]  T. Pozzan,et al.  Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells , 1997, The EMBO journal.

[149]  A. Brown,et al.  Patch and whole cell calcium currents recorded simultaneously in snail neurons , 1984, The Journal of general physiology.

[150]  M. Poenie Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. , 1990, Cell calcium.

[151]  R. Wojcikiewicz,et al.  Regulation of Muscarinic Agonist‐Induced Activation of Phosphoinositidase C in Electrically Permeabilized SH‐SY5Y Human Neuroblastoma Cells by Guanine Nucleotides , 1990, Journal of neurochemistry.

[152]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[153]  Min Goo Lee,et al.  Polarized Expression of Ca2+ Channels in Pancreatic and Salivary Gland Cells , 1997, The Journal of Biological Chemistry.

[154]  Peter Lipp,et al.  Cooking with Calcium: The Recipes for Composing Global Signals from Elementary Events , 1997, Cell.

[155]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.