The idemetric property: when most distances are (almost) the same
暂无分享,去创建一个
Tim Roughgarden | George Barmpalias | Angsheng Li | Neng Huang | Andy Lewis-Pye | Xuechen Li | Yicheng Pan | T. Roughgarden | George Barmpalias | Andrew Lewis-Pye | Angsheng Li | Yicheng Pan | Neng Huang | Xuechen Li
[1] Remco van der Hofstad,et al. Distances in Random Graphs with Finite Mean and Infinite Variance Degrees , 2005, math/0502581.
[2] Fan Chung Graham,et al. Quasi‐random graphs with given degree sequences , 2008, Random Struct. Algorithms.
[3] K. Fernow. New York , 1896, American Potato Journal.
[4] Fan Chung Graham,et al. The Average Distance in a Random Graph with Given Expected Degrees , 2004, Internet Math..
[5] Boris G. Pittel,et al. Note on the Heights of Random Recursive Trees and Random m-ary Search Trees , 1994, Random Struct. Algorithms.
[6] Marvin A. Carlson. Editor , 2015 .
[7] Mikkel Thorup,et al. Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.
[8] Piet Van Mieghem,et al. Distances in random graphs with finite variance degrees , 2005, Random Struct. Algorithms.
[9] Jon M. Kleinberg,et al. The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.
[10] F. Chung,et al. The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[11] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[12] R. Graham,et al. Quasi-random graphs with given degree sequences , 2008 .
[13] Stephen Warshall,et al. A Theorem on Boolean Matrices , 1962, JACM.
[14] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[15] Mikkel Thorup,et al. Approximate distance oracles , 2001, JACM.
[16] P. Erdos,et al. On the evolution of random graphs , 1984 .
[17] Journal of the Association for Computing Machinery , 1961, Nature.
[18] S. Crawford,et al. Volume 1 , 2012, Journal of Diabetes Investigation.
[19] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[20] Cyril Gavoille,et al. Space-Efficiency for Routing Schemes of Stretch Factor Three , 2001, J. Parallel Distributed Comput..
[21] Steffen Dereich,et al. Typical Distances in Ultrasmall Random Networks , 2011, Advances in Applied Probability.
[22] Remco van der Hofstad,et al. Random Graphs and Complex Networks , 2016, Cambridge Series in Statistical and Probabilistic Mathematics.
[23] Béla Bollobás,et al. The Diameter of a Scale-Free Random Graph , 2004, Comb..
[24] Ilkka Norros,et al. On a conditionally Poissonian graph process , 2006, Advances in Applied Probability.
[25] Lance Fortnow,et al. Proceedings of the 55th Annual ACM Symposium on Theory of Computing , 2011, STOC.
[26] Remco van der Hofstad,et al. Random Graphs and Complex Networks: Volume 1 , 2016 .
[27] Jon M. Kleinberg,et al. Triangulation and embedding using small sets of beacons , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[28] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[29] Stéphane Pérennes,et al. Memory requirement for routing in distributed networks , 1996, PODC '96.
[30] Peter Deuflhard,et al. Numerische Mathematik. I , 2002 .
[31] Ryan Williams,et al. Faster all-pairs shortest paths via circuit complexity , 2013, STOC.
[32] Ralph Keusch,et al. Greedy Routing and the Algorithmic Small-World Phenomenon , 2016, PODC.
[33] Albert-László Barabási,et al. Internet: Diameter of the World-Wide Web , 1999, Nature.
[34] Xerox,et al. The Small World , 1999 .
[35] Sharon L. Milgram,et al. The Small World Problem , 1967 .
[36] B. Bollobás. The evolution of random graphs , 1984 .
[37] Rick Durrett,et al. Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .
[38] Fan Chung Graham,et al. Quasi-random graphs , 1988, Comb..
[39] Remco van der Hofstad,et al. Diameters in Preferential Attachment Models , 2007, 0705.4153.