Development of the macaque face-patch system

Face recognition is highly proficient in humans and other social primates; it emerges in infancy, but the development of the neural mechanisms supporting this behaviour is largely unknown. We use blood-volume functional MRI to monitor longitudinally the responsiveness to faces, scrambled faces, and objects in macaque inferotemporal cortex (IT) from 1 month to 2 years of age. During this time selective responsiveness to monkey faces emerges. Some functional organization is present at 1 month; face-selective patches emerge over the first year of development, and are remarkably stable once they emerge. Face selectivity is refined by a decreasing responsiveness to non-face stimuli.

[1]  D. Hubel,et al.  Ordered arrangement of orientation columns in monkeys lacking visual experience , 1974, The Journal of comparative neurology.

[2]  W. Mason,et al.  Effects of Age, Objects, and Visual Experience on Affective Responses of Rhesus Monkeys to Strangers. , 1979 .

[3]  Patricia S. Goldman-Rakic,et al.  Face scanning and responsiveness to social cues in infant rhesus monkeys. , 1982 .

[4]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Douglas S. Bridges,et al.  A Constructivist Manifesto , 1985 .

[6]  Stanislas Dehaene,et al.  Neuronal models of cognitive functions , 1989, Cognition.

[7]  C G Gross,et al.  Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Mark H. Johnson,et al.  Newborns' preferential tracking of face-like stimuli and its subsequent decline , 1991, Cognition.

[9]  Mark H. Johnson,et al.  CONSPEC and CONLERN: a two-process theory of infant face recognition. , 1991, Psychological review.

[10]  L. Kiorpes Development of vernier acuity and grating acuity in normally reared monkeys , 1992, Visual Neuroscience.

[11]  C. Gross,et al.  Response properties of neurons in temporal cortical visual areas of infant monkeys. , 1993, Journal of neurophysiology.

[12]  H. Rodman Development of inferior temporal cortex in the monkey. , 1994, Cerebral cortex.

[13]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[14]  Margaret S. Livingstone,et al.  Stereopsis and binocularity in the squirrel monkey , 1995, Vision Research.

[15]  Leslie G. Ungerleider,et al.  Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study. , 1996, Cerebral cortex.

[16]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[17]  D. Teller,et al.  First glances: the vision of infants. the Friedenwald lecture. , 1997, Investigative ophthalmology & visual science.

[18]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[19]  Egill Rostrup,et al.  Visual Activation in Infants and Young Children Studied by Functional Magnetic Resonance Imaging , 1998, Pediatric Research.

[20]  C. Nelson The Development and Neural Bases of Face Recognition , 2001 .

[21]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[22]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[23]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[24]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[25]  David C. Van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[26]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[27]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[28]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[29]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[30]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[31]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[33]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[34]  R. Kiani,et al.  Microstimulation of inferotemporal cortex influences face categorization , 2006, Nature.

[35]  K. Grill-Spector,et al.  High-resolution imaging reveals highly selective nonface clusters in the fusiform face area , 2006, Nature Neuroscience.

[36]  K M Gothard,et al.  Neural responses to facial expression and face identity in the monkey amygdala. , 2007, Journal of neurophysiology.

[37]  Beatriz Luna,et al.  Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. , 2007, Developmental science.

[38]  M. Constantine-Paton,et al.  Development of hemodynamic responses and functional connectivity in rat somatosensory cortex , 2008, Nature Neuroscience.

[39]  Y. Sugita Face perception in monkeys reared with no exposure to faces , 2008, Proceedings of the National Academy of Sciences.

[40]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[41]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[42]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[43]  Jennifer M. D. Yoon,et al.  Human Neuroscience , 2022 .

[44]  Tom Hartley,et al.  Selectivity for low-level features of objects in the human ventral stream , 2010, NeuroImage.

[45]  Hisao Nishijo,et al.  The monkey pulvinar neurons differentially respond to emotional expressions of human faces , 2010, Behavioural Brain Research.

[46]  James W. Tanaka,et al.  The SHINE toolbox for controlling low-level image properties , 2010 .

[47]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[48]  Philippe Pinel,et al.  Cortical representations of symbols, objects, and faces are pruned back during early childhood. , 2011, Cerebral cortex.

[49]  Daniel D. Dilks,et al.  Differential selectivity for dynamic versus static information in face-selective cortical regions , 2011, NeuroImage.

[50]  M. Livingstone,et al.  Behavioral and Anatomical Consequences of Early versus Late Symbol Training in Macaques , 2012, Neuron.

[51]  Daniel D. Dilks,et al.  A critical review of the development of face recognition: Experience is less important than previously believed , 2012, Cognitive neuropsychology.

[52]  Roger B. H. Tootell,et al.  A curvature-processing network in macaque visual cortex , 2013 .

[53]  Carlo Baldassi,et al.  Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons , 2013, PLoS Comput. Biol..

[54]  M. Johnson,et al.  Parsing eye-tracking data of variable quality to provide accurate fixation duration estimates in infants and adults , 2012, Behavior research methods.

[55]  Leslie G. Ungerleider,et al.  Curvature-processing network in macaque visual cortex , 2014, Proceedings of the National Academy of Sciences.

[56]  Justin L. Vincent,et al.  Novel domain formation reveals proto-architecture in inferotemporal cortex , 2014, Nature Neuroscience.

[57]  Winrich A. Freiwald,et al.  Contrasting Specializations for Facial Motion within the Macaque Face-Processing System , 2015, Current Biology.

[58]  Tom Hartley,et al.  Low-level properties of natural images predict topographic patterns of neural response in the ventral visual pathway. , 2015, Journal of vision.

[59]  J. Alonso,et al.  PRINCIPLES UNDERLYING SENSORY MAP TOPOGRAPHY IN PRIMARY VISUAL CORTEX , 2016, Nature.

[60]  David Fitzpatrick,et al.  Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture , 2016, Nature.

[61]  Timothy J. Andrews,et al.  Category-selective patterns of neural response in the ventral visual pathway in the absence of categorical information , 2016, NeuroImage.

[62]  L. Squire,et al.  Memory, Visual Discrimination Performance, and the Human Hippocampus , 2011, The Journal of Neuroscience.