Indexing hierarchical structures using graph spectra

Hierarchical image structures are abundant in computer vision and have been used to encode part structure, scale spaces, and a variety of multiresolution features. In this paper, we describe a framework for indexing such representations that embeds the topological structure of a directed acyclic graph (DAG) into a low-dimensional vector space. Based on a novel spectral characterization of a DAG, this topological signature allows us to efficiently retrieve a promising set of candidates from a database of models using a simple nearest-neighbor search. We establish the insensitivity of the signature to minor perturbation of graph structure due to noise, occlusion, or node split/merge. To accommodate large-scale occlusion, the DAG rooted at each nonleaf node of the query "votes" for model objects that share that "part," effectively accumulating local evidence in a model DAG's topological subspaces. We demonstrate the approach with a series of indexing experiments in the domain of view-based 3D object recognition using shock graphs.

[1]  Kim L. Boyer,et al.  Modelbase Partitioning Using Property Matrix Spectra , 1998, Comput. Vis. Image Underst..

[2]  Christian Böhm,et al.  Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases , 2001, CSUR.

[3]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[4]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[5]  Robert M. Haralick,et al.  Organization of Relational Models for Scene Analysis , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Philip N. Klein,et al.  Shock-Based Indexing into Large Shape Databases , 2002, ECCV.

[7]  Benjamin B. Kimia,et al.  Shapes, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space , 1995, International Journal of Computer Vision.

[8]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[10]  Tony Lindeberg,et al.  Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention , 1993, International Journal of Computer Vision.

[11]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[12]  Horst Bunke,et al.  Subgraph Isomorphism in Polynomial Time , 1995 .

[13]  Petros Drineas,et al.  Pass efficient algorithms for approximating large matrices , 2003, SODA '03.

[14]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Horst Bunke,et al.  A New Algorithm for Error-Tolerant Subgraph Isomorphism Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Kaleem Siddiqi,et al.  Hamilton-Jacobi Skeletons , 2002, International Journal of Computer Vision.

[18]  Yehezkel Lamdan,et al.  On recognition of 3-D objects from 2-D images , 2011, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[19]  Avinash C. Kak,et al.  3-D Object Recognition Using Bipartite Matching Embedded in Discrete Relaxation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Anil K. Jain,et al.  3D object recognition using invariant feature indexing of interpretation tables , 1992, CVGIP Image Underst..

[21]  Santosh S. Vempala,et al.  Latent Semantic Indexing , 2000, PODS 2000.

[22]  David A. Forsyth,et al.  Invariant Descriptors for 3D Object Recognition and Pose , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  J Farradane Relational Indexing , .

[24]  Edwin R. Hancock,et al.  Graph Matching With a Dual-Step EM Algorithm , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[26]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[27]  Kaleem Siddiqi,et al.  Robust and efficient skeletal graphs , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[28]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[29]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  D. Cvetkovic,et al.  The largest eigenvalue of a graph: A survey , 1990 .

[31]  Ali Shokoufandeh,et al.  Indexing using a spectral encoding of topological structure , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[32]  Edwin R. Hancock,et al.  Spectral embedding of graphs , 2003, Pattern Recognit..

[33]  King-Sun Fu,et al.  A graph distance measure for image analysis , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Kim L. Boyer,et al.  Structural Stereopsis for 3-D Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Azriel Rosenfeld,et al.  From volumes to views: An approach to 3-D object recognition , 1992, CVGIP Image Underst..

[36]  Benoit Huet,et al.  Relational object recognition from large structural libraries , 2002, Pattern Recognit..

[37]  Marc Rioux,et al.  Recognition and Shape Synthesis of 3-D Objects Based on Attributed Hypergraphs , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Horst Bunke,et al.  Graph database filtering using decision trees , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[39]  Ehud Gudes,et al.  Exploiting local similarity for indexing paths in graph-structured data , 2002, Proceedings 18th International Conference on Data Engineering.

[40]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[41]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[42]  Kyuseok Shim,et al.  XTRACT: a system for extracting document type descriptors from XML documents , 2000, SIGMOD '00.

[43]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[44]  Andrew K. C. Wong,et al.  Entropy and Distance of Random Graphs with Application to Structural Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Kaleem Siddiqi,et al.  Matching Hierarchical Structures Using Association Graphs , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Petros Drineas,et al.  FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .

[47]  Ali Shokoufandeh,et al.  View-based 3-D object recognition using shock graphs , 2002, Object recognition supported by user interaction for service robots.

[48]  A. Neumaier The second largest eigenvalue of a tree , 1982 .

[49]  Alan L. Yuille,et al.  FORMS: A flexible object recognition and modelling system , 1996, International Journal of Computer Vision.

[50]  K. Boyer,et al.  Organizing Large Structural Modelbases , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[52]  Dan Suciu,et al.  A query language and optimization techniques for unstructured data , 1996, SIGMOD '96.

[53]  Azriel Rosenfeld,et al.  3-D Shape Recovery Using Distributed Aspect Matching , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  David W. Jacobs,et al.  Space and Time Bounds on Indexing 3D Models from 2D Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Edwin R. Hancock,et al.  Eigenspaces for Graphs , 2002, Int. J. Image Graph..

[56]  Robert M. Haralick,et al.  A Metric for Comparing Relational Descriptions , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Juan Humberto Sossa Azuela,et al.  Model indexing: the graph-hashing approach , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  K. Sengupta,et al.  Using geometric hashing with information theoretic clustering for fast recognition from a large CAD modelbase , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[59]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[60]  David Lee,et al.  Online minimization of transition systems (extended abstract) , 1992, STOC '92.

[61]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[62]  Edwin R. Hancock,et al.  Graph spectral approach for learning view structure , 2002, Object recognition supported by user interaction for service robots.

[63]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[64]  Roy Goldman,et al.  DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases , 1997, VLDB.

[65]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.