Reversible Light-, Thermo-, and Mechano-Responsive Elastomeric Polymer Opal Films

A new strategy to achieve easily scalable triple stimuli-responsive elastomeric opal films for applications as stretch-tunable photonic band gap materials is reported. Novel monodisperse highly functional core-interlayer-shell beads are obtained by semicontinuous emulsion polymerization featuring a temperature-sensitive fluorescent rhodamine dye either locally restricted in the core or the shell of prepared beads. After extrusion and compression molding, homogeneous elastomeric opal films with fascinating stretch-tunable and temperature-dependent fluorescent properties can be obtained. Applying strains of only a few percent lead to significant blue shift of the reflected colors making these films excellent candidates for applications as deformation sensors. Higher strains up to 90% lead to a tremendous Bragg reflection color change caused by transition from the (111) to the (200) lattice plane. The well-ordered opaline structure with its stop band at the emission frequency of the incorporated fluorescent ...

[1]  Tao Chen,et al.  Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications , 2010 .

[2]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[3]  S. Furumi Recent advances in polymer colloidal crystal lasers. , 2012, Nanoscale.

[4]  Tetsuo Tsutsui,et al.  SPONTANEOUS EMISSION FROM FLUORESCENT MOLECULES EMBEDDED IN PHOTONIC CRYSTALS CONSISTING OF POLYSTYRENE MICROSPHERES , 1998 .

[5]  Yan Lu,et al.  “Smart” nanoparticles: Preparation, characterization and applications , 2007 .

[6]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[7]  Jonas Fölling,et al.  Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. , 2009, Chemistry.

[8]  Keiji Tanaka,et al.  Fluorescence behavior of dyes in thin films of various polymers , 2012 .

[9]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[10]  Anand Yethiraj,et al.  Tunable colloids: control of colloidal phase transitions with tunable interactions. , 2007, Soft matter.

[11]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[12]  Koen Clays,et al.  Linear and nonlinear optical properties of colloidal photonic crystals. , 2012, Chemical reviews.

[13]  Stuart J. Rowan,et al.  Stimuli-responsive mechanically adaptive polymer nanocomposites. , 2010, ACS applied materials & interfaces.

[14]  Jane F. Bertone,et al.  Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals , 1999 .

[15]  Lei Liu,et al.  Self-Assembly Motif for Creating Submicron Periodic Materials. Polymerized Crystalline Colloidal Arrays , 1994 .

[16]  Eugenia Kumacheva,et al.  Polymeric nanostructured material for high-density three-dimensional optical memory storage , 2001 .

[17]  Tsutomu Sawada,et al.  Photonic rubber sheets with tunable color by elastic deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[18]  U. Schepers,et al.  Investigating rhodamine B-labeled peptoids: scopes and limitations of its applications. , 2011, Biopolymers.

[19]  Sergey V. Gaponenko,et al.  Photonic band gap phenomenon and optical properties of artificial opals , 1997 .

[20]  G. Ozin,et al.  Bottom-up assembly of photonic crystals. , 2013, Chemical Society reviews.

[21]  J. Galisteo‐López,et al.  Self‐Assembled Photonic Structures , 2011, Advanced materials.

[22]  P. Harrowell,et al.  The shear induced disordering transition in a colloidal crystal: Nonequilibrium Brownian dynamic simulations , 1995 .

[23]  Tilmann Ruhl,et al.  Colloidal Crystals in Latex Films: Rubbery Opals , 2001 .

[24]  S. Egelhaaf,et al.  Confocal microscopy of colloidal particles: towards reliable, optimum coordinates. , 2007, Advances in colloid and interface science.

[25]  Jung Hyun Soh,et al.  Rhodamine urea derivatives as fluorescent chemosensors for Hg2 , 2007 .

[26]  M. Ballauff Nanoscopic Polymer Particles with a Well-Defined Surface: Synthesis, Characterization, and Properties , 2003 .

[27]  Jeremy J. Baumberg,et al.  Modification of the refractive-index contrast in polymer opal films , 2011 .

[28]  Frank Marlow,et al.  Opals: status and prospects. , 2009, Angewandte Chemie.

[29]  Justin R. Kumpfer,et al.  Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. , 2011, Journal of the American Chemical Society.

[30]  Edwin L. Thomas,et al.  Simultaneous localization of photons and phonons in two-dimensional periodic structures , 2006 .

[31]  Mary M. Caruso,et al.  Mechanically-induced chemical changes in polymeric materials. , 2009, Chemical reviews.

[32]  Alfons van Blaaderen,et al.  Self-assembly route for photonic crystals with a bandgap in the visible region. , 2007, Nature materials.

[33]  T. Vissers,et al.  Bonding Assembled Colloids without Loss of Colloidal Stability , 2012, Advanced materials.

[34]  Chao Zhang,et al.  Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout , 2010, Advanced materials.

[35]  Lei Shi,et al.  Self-assembly of colloidal spheres and application as solvent responding polymer film. , 2013, Journal of colloid and interface science.

[36]  Jeremy J. Baumberg,et al.  Compact strain-sensitive flexible photonic crystals for sensors , 2005 .

[37]  Junyu Li,et al.  Redox-Responsive Polymer Brushes Grafted from Polystyrene Nanoparticles by Means of Surface Initiated Atom Transfer Radical Polymerization , 2012 .

[38]  Richard M. De La Rue,et al.  Photonic crystals: Microassembly in 3D. , 2003 .

[39]  Xiaoling Yang,et al.  Photonic crystal pH and metal cation sensors based on poly(vinyl alcohol) hydrogel , 2012 .

[40]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[41]  Lothar Lilge,et al.  Three‐Dimensional Arrays in Polymer Nanocomposites , 1999 .

[42]  Jeremy J. Baumberg,et al.  Shear‐Induced Organization in Flexible Polymer Opals , 2008 .

[43]  B. You,et al.  Self-assembly of polymer colloids and their solvatochromic-responsive properties , 2011 .

[44]  Tilmann Ruhl,et al.  Large Area Monodomain Order in Colloidal Crystals , 2004 .

[45]  Nicholas R. Denny,et al.  Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles† , 2008 .

[46]  Bai Yang,et al.  Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.

[47]  R. Gleiter,et al.  Photochromie von Rhodaminderivaten , 1977 .

[48]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[49]  M. Bossi,et al.  The mechanism of the photochromic transformation of spirorhodamines , 2012, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[50]  T. Kanai,et al.  New route to produce dry colloidal crystals without cracks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[51]  B. Viel,et al.  Reversible Deformation of Opal Elastomers , 2007 .

[52]  Peter Spahn,et al.  3D Bulk Ordering in Macroscopic Solid Opaline Films by Edge‐Induced Rotational Shearing , 2011, Advanced materials.

[53]  B. Ackerson,et al.  Shear-induced order in suspensions of hard spheres. , 1988, Physical review letters.

[54]  K. Okuyama,et al.  Formation of highly ordered nanostructures by drying micrometer colloidal droplets. , 2010, ACS nano.

[55]  Andreas Stein,et al.  Colloidal assembly: the road from particles to colloidal molecules and crystals. , 2011, Angewandte Chemie.

[56]  Christian Eggeling,et al.  Diffraction-unlimited all-optical imaging and writing with a photochromic GFP , 2011, Nature.

[57]  T. Ruhl,et al.  Artificial opals prepared by melt compression , 2003 .

[58]  D. Zhao,et al.  Large-scale fabrication of three-dimensional ordered polymer films with strong structure colors and robust mechanical properties , 2012 .

[59]  C. López,et al.  Photonic crystals for laser action , 1999 .

[60]  Peter Spahn,et al.  Anisotropic Resonant Scattering from Polymer Photonic Crystals , 2012, Advanced materials.

[61]  J. Baumberg,et al.  Nanoparticle-tuned structural color from polymer opals. , 2007, Optics express.

[62]  Mitchell T. Ong,et al.  Force-induced activation of covalent bonds in mechanoresponsive polymeric materials , 2009, Nature.

[63]  Alexandru Vlad,et al.  Direct Transcription of Two‐Dimensional Colloidal Crystal Arrays into Three‐Dimensional Photonic Crystals , 2013 .

[64]  N. Tamaoki,et al.  Fluorescence photoswitching based on a photochromic pKa change in an aqueous solution. , 2012, Chemical communications.

[65]  U. Gasser,et al.  Crystallization in three- and two-dimensional colloidal suspensions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  Tsutomu Sawada,et al.  Widely Tunable Lasing in a Colloidal Crystal Gel Film Permanently Stabilized by an Ionic Liquid , 2011, Advanced materials.

[67]  Jeffrey S. Moore,et al.  Shear activation of mechanophore-crosslinked polymers , 2011 .

[68]  Jongseung Yoon,et al.  Highly Oriented Thin‐Film Microdomain Patterns of Ultrahigh Molecular Weight Block Copolymers via Directional Solidification of a Solvent , 2006 .

[69]  E. Kumacheva,et al.  Multidye Nanostructured Material for Optical Data Storage and Security Labeling , 2004 .

[70]  C. Keplinger,et al.  Electric-field-tuned color in photonic crystal elastomers , 2012 .