Transgenic rat with overproduction of ubiquitous angiotensin-(1-7) presents neuroprotection in a model of ischemia and reperfusion

[1]  R. Sinisterra,et al.  Alamandine Induces Neuroprotection in Ischemic Stroke Models. , 2022, Current medicinal chemistry.

[2]  N. Alenina,et al.  Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. , 2021, Clinical science.

[3]  H. M. de Andrade,et al.  Angiotensin-(1-7) Central Mechanisms After ICV Infusion in Hypertensive Transgenic (mRen2)27 Rats , 2021, Frontiers in Neuroscience.

[4]  Chad H. Jones,et al.  Neuroprotection by post‐stroke administration of an oral formulation of angiotensin‐(1–7) in ischaemic stroke , 2018, Experimental physiology.

[5]  A. Teixeira,et al.  The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. , 2017, Current drug targets.

[6]  I. Cascorbi,et al.  Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important? , 2017, Naunyn-Schmiedeberg's Archives of Pharmacology.

[7]  I. Cascorbi,et al.  Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important? , 2017, Naunyn-Schmiedeberg's Archives of Pharmacology.

[8]  Emma J. Reid,et al.  Therapeutic potential of the renin angiotensin system in ischaemic stroke , 2016, Experimental & Translational Stroke Medicine.

[9]  L. Barcelos,et al.  Platelet-activating factor receptor (PAFR) plays a crucial role in experimental global cerebral ischemia and reperfusion , 2016, Brain Research Bulletin.

[10]  Anil Kumar,et al.  A review on animal models of stroke: An update , 2016, Brain Research Bulletin.

[11]  C. Sumners,et al.  Direct anti‐inflammatory effects of angiotensin‐(1–7) on microglia , 2016, Journal of neurochemistry.

[12]  Jun Ren,et al.  Mas receptor mediates cardioprotection of angiotensin‐(1‐7) against Angiotensin II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress , 2015, Journal of cellular and molecular medicine.

[13]  M. Raizada,et al.  Upregulation of Angiotensin (1-7)-Mediated Signaling Preserves Endothelial Function Through Reducing Oxidative Stress in Diabetes. , 2015, Antioxidants & redox signaling.

[14]  D. Purich,et al.  Activation of the Neuroprotective Angiotensin-Converting Enzyme 2 in Rat Ischemic Stroke , 2015, Hypertension.

[15]  Dan Wang,et al.  Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9. , 2015, European journal of pharmacology.

[16]  C. Sumners,et al.  Neuroprotective Mechanisms of the ACE2–Angiotensin-(1-7)–Mas Axis in Stroke , 2015, Current Hypertension Reports.

[17]  Shuzhen Chen,et al.  Angiotensin Converting Enzyme 2/Ang‐(1–7)/Mas Axis Protects Brain from Ischemic Injury with a Tendency of Age‐dependence , 2014, CNS neuroscience & therapeutics.

[18]  C. Sumners,et al.  Cerebroprotective action of angiotensin peptides in stroke. , 2014, Clinical science.

[19]  J. Bizon,et al.  Centrally administered angiotensin‐(1–7) increases the survival of stroke‐prone spontaneously hypertensive rats , 2014, Experimental physiology.

[20]  Donald D. Heistad,et al.  Promising neuroprotective effects of the angiotensin‐(1–7)–angiotensin‐converting enzyme 2–Mas axis in stroke , 2014, Experimental physiology.

[21]  K. Chopra,et al.  Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[22]  T. Jiang,et al.  The expression of angiotensin-converting enzyme 2–angiotensin-(1–7)–Mas receptor axis are upregulated after acute cerebral ischemic stroke in rats , 2013, Neuropeptides.

[23]  M. Horiuchi,et al.  Protective arms of the renin–angiotensin‐system in neurological disease , 2013, Clinical and experimental pharmacology & physiology.

[24]  J. Mocco,et al.  Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke , 2013, Neuropharmacology.

[25]  M. Teixeira,et al.  ACE2, angiotensin‐(1‐7) and Mas receptor axis in inflammation and fibrosis , 2013, British journal of pharmacology.

[26]  T. Jiang,et al.  ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke , 2013, Current neuropharmacology.

[27]  T. Jiang,et al.  Suppressing inflammation by inhibiting the NF‐κB pathway contributes to the neuroprotective effect of angiotensin‐(1‐7) in rats with permanent cerebral ischaemia , 2012, British journal of pharmacology.

[28]  M. Raizada,et al.  Cerebroprotection by angiotensin‐(1–7) in endothelin‐1‐induced ischaemic stroke , 2011, Experimental physiology.

[29]  N. Alenina,et al.  ACE2–angiotensin-(1–7)–Mas axis and oxidative stress in cardiovascular disease , 2011, Hypertension Research.

[30]  Yan Liu,et al.  Central administration of angiotensin-(1–7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats , 2008, Neuropeptides.

[31]  P. Houghton,et al.  Protective effect of biflavones from Araucaria bidwillii Hook in rat cerebral ischemia/reperfusion induced oxidative stress , 2007, Behavioural Brain Research.

[32]  P. Vikman,et al.  Gene expression profiling in the human middle cerebral artery after cerebral ischemia , 2006, European journal of neurology.

[33]  I. Velasco,et al.  Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion , 2002, Neuroscience Letters.

[34]  John S. Beech,et al.  Resolution of Stroke Deficits Following Contralateral Grafts of Conditionally Immortal Neuroepithelial Stem Cells , 2001, Stroke.

[35]  R. Gao,et al.  Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity , 1998 .

[36]  M. Ross,et al.  Inducible Nitric Oxide Synthase Gene Expression in Brain following Cerebral Ischemia , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[37]  A. Saria,et al.  Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues , 1983, Journal of Neuroscience Methods.

[38]  K. Yagi,et al.  Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. , 1979, Analytical biochemistry.

[39]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[40]  Dennis P. Nelson,et al.  Enthalpy of Decomposition of Hydrogen Peroxide by Catalase at 25C (with Molar Extinction Coefficients of H2O2 Solutions in the UV) , 1972 .

[41]  Henry County RESOLUTION OF THE , 2014 .

[42]  T. Jiang,et al.  Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats. , 2013, Pharmacological research.

[43]  U. Förstermann,et al.  Inducible Nitric Oxide Synthase , 2008 .

[44]  D P Nelson,et al.  Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H 2 O 2 solutions in the UV). , 1972, Analytical biochemistry.

[45]  J. Sedlák,et al.  Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. , 1968, Analytical biochemistry.