Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines

[1]  A. Telenti,et al.  The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 , 2022, bioRxiv.

[2]  M. Beltramello,et al.  Broad betacoronavirus neutralization by a stem helix–specific human antibody , 2021, Science.

[3]  M. Beltramello,et al.  Broad sarbecovirus neutralization by a human monoclonal antibody , 2021, Nature.

[4]  M. Beltramello,et al.  SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape , 2021, Nature.

[5]  A. Telenti,et al.  SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern , 2021, Science.

[6]  J. Bloom,et al.  Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection , 2021, Science Translational Medicine.

[7]  A. Walls,et al.  Structural basis for broad coronavirus neutralization , 2021, Nature Structural & Molecular Biology.

[8]  M. Beltramello,et al.  A human antibody that broadly neutralizes betacoronaviruses protects against SARS-CoV-2 by blocking the fusion machinery , 2021, bioRxiv.

[9]  B. Haynes,et al.  A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice , 2021, bioRxiv.

[10]  M. Nussenzweig,et al.  Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies , 2021, bioRxiv.

[11]  R. Andino,et al.  Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant , 2021, Cell.

[12]  B. Pulendran,et al.  Adjuvanting a subunit COVID-19 vaccine to induce protective immunity , 2021, Nature.

[13]  A. Telenti,et al.  Membrane lectins enhance SARS-CoV-2 infection and influence the neutralizing activity of different classes of antibodies , 2021, bioRxiv.

[14]  L. Stamatatos,et al.  mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection , 2021, Science.

[15]  M. Diamond,et al.  Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein , 2021, Cell.

[16]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, Cell.

[17]  D. Baker,et al.  Quadrivalent influenza nanoparticle vaccines induce broad protection , 2021, Nature.

[18]  D. Weissman,et al.  Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice , 2021, Science.

[19]  William T. Harvey,et al.  Author Correction: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies , 2021, Nature.

[20]  D. Ho,et al.  Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 , 2021, Nature.

[21]  L. Morris,et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma , 2021, Nature Medicine.

[22]  D. Stuart,et al.  The antigenic anatomy of SARS-CoV-2 receptor binding domain , 2021, Cell.

[23]  N. Sullivan,et al.  Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine - Preliminary Report. , 2021, The New England journal of medicine.

[24]  M. Nussenzweig,et al.  mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants , 2021, Nature.

[25]  V. Simon,et al.  Robust spike antibody responses and increased reactogenicity in seropositive individuals after a single dose of SARS-CoV-2 mRNA vaccine , 2021, medRxiv.

[26]  M. Edelstein,et al.  Impact of age, ethnicity, sex and prior infection status on immunogenicity following a single dose of the BNT162b2 mRNA COVID-19 vaccine: real-world evidence from healthcare workers, Israel, December 2020 to January 2021 , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[27]  D. Ho,et al.  Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to Antibody Neutralization , 2021, Research square.

[28]  M. Diamond,et al.  Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail , 2021, bioRxiv.

[29]  M. Beltramello,et al.  Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity , 2021, Cell.

[30]  D. Fremont,et al.  Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization , 2021, Cell Host & Microbe.

[31]  D. Ho,et al.  Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to Antibody Neutralization , 2021, bioRxiv.

[32]  D. Ho,et al.  Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 , 2021, bioRxiv.

[33]  Lisa E. Gralinski,et al.  Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody , 2021, Science.

[34]  L. Morris,et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma , 2021, bioRxiv.

[35]  M. Nussenzweig,et al.  Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice , 2020, Science.

[36]  J. Bloom,et al.  Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies , 2021, bioRxiv.

[37]  A. Walls,et al.  Structural basis for broad coronavirus neutralization , 2020, Nature Structural & Molecular Biology.

[38]  Rommie E. Amaro,et al.  SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma , 2020, bioRxiv.

[39]  Carl A. B. Pearson,et al.  Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England , 2020, medRxiv.

[40]  D. Stuart,et al.  ­­­The Antigenic Anatomy of SARS-CoV-2 Receptor Binding Domain , 2020, SSRN Electronic Journal.

[41]  Sergei L. Kosakovsky Pond,et al.  Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa , 2020, medRxiv.

[42]  P. Dormitzer,et al.  Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine , 2020, The New England journal of medicine.

[43]  D. Lauffenburger,et al.  Correlates of Protection Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[44]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2020, bioRxiv.

[45]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, Cell Host & Microbe.

[46]  W. P. Duprex,et al.  Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape , 2020, bioRxiv.

[47]  Lisa E. Gralinski,et al.  SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo , 2020, Science.

[48]  Gaurav D. Gaiha,et al.  Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host , 2020, The New England journal of medicine.

[49]  E. Fischer,et al.  Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer , 2020, Cell.

[50]  Lisa E. Gralinski,et al.  Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 , 2020, Cell.

[51]  V. Munster,et al.  Case Study: Prolonged infectious SARS-CoV-2 shedding from an asymptomatic immunocompromised cancer patient. Avanzato, et al. , 2020 .

[52]  Vineet D. Menachery,et al.  Spike mutation D614G alters SARS-CoV-2 fitness , 2020, Nature.

[53]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[54]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[55]  G. Atwal,et al.  REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters , 2020, Science.

[56]  E. Holmes,et al.  A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein , 2020, Current Biology.

[57]  M. Beltramello,et al.  Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms , 2020, Science.

[58]  Lisa E. Gralinski,et al.  A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice , 2020, Cell.

[59]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[60]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, Cell.

[61]  D. Lauffenburger,et al.  Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters , 2020, Nature medicine.

[62]  Vineet D. Menachery,et al.  Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility , 2020, Nature.

[63]  Lisa E. Gralinski,et al.  A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures , 2020, Nature.

[64]  Lisa E. Gralinski,et al.  Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 , 2020, Cell.

[65]  J. Mascola,et al.  SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness , 2020, Nature.

[66]  J. Mascola,et al.  Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates , 2020, The New England journal of medicine.

[67]  D. Lauffenburger,et al.  Single-Shot Ad26 Vaccine Protects Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[68]  Ilya J. Finkelstein,et al.  Structure-based design of prefusion-stabilized SARS-CoV-2 spikes , 2020, Science.

[69]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[70]  R. Dutch Faculty Opinions recommendation of Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[71]  Xuguang Li,et al.  The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity , 2020, Cell.

[72]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[73]  J. Mascola,et al.  An mRNA Vaccine against SARS-CoV-2 — Preliminary Report , 2020, The New England journal of medicine.

[74]  Pardis C Sabeti,et al.  Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant , 2020, bioRxiv.

[75]  S. Rowland-Jones,et al.  Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus , 2020, Cell.

[76]  R. Owens,et al.  Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike , 2020, Cell Host & Microbe.

[77]  Jesse D. Bloom,et al.  Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding , 2020, bioRxiv.

[78]  G. Atwal,et al.  Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies , 2020, Science.

[79]  D. Burton,et al.  Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model , 2020, Science.

[80]  J. Dye,et al.  Broad neutralization of SARS-related viruses by human monoclonal antibodies , 2020, Science.

[81]  A. Basu,et al.  Faculty Opinions recommendation of SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[82]  R. Baric,et al.  DNA vaccine protection against SARS-CoV-2 in rhesus macaques , 2020, Science.

[83]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[84]  M. V. van Breemen,et al.  Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability , 2020, Science.

[85]  Alice C Hughes,et al.  A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein , 2020, Current Biology.

[86]  J. Bloom,et al.  Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays , 2020, bioRxiv.

[87]  K. Yuen,et al.  Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2 , 2020, Cell.

[88]  I. Wilson,et al.  A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV , 2020, Science.

[89]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[90]  Jia-Fu Jiang,et al.  Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins , 2020, Nature.

[91]  K. Shi,et al.  Structural basis of receptor recognition by SARS-CoV-2 , 2020, Nature.

[92]  Nicholas C. Wu,et al.  A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV , 2020, Science.

[93]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[94]  Qiang Zhou,et al.  Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 , 2020, Science.

[95]  M. Letko,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[96]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[97]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[98]  P. Bjorkman,et al.  Construction, characterization, and immunization of nanoparticles that display a diverse array of influenza HA trimers , 2020, bioRxiv.

[99]  D. Veesler,et al.  Structural insights into coronavirus entry , 2019, Advances in Virus Research.

[100]  A. Walls,et al.  Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion , 2019, Cell.

[101]  U. Baxa,et al.  Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses , 2018, Nature Immunology.

[102]  J. Plotkin,et al.  Inferring the shape of global epistasis , 2018, Proceedings of the National Academy of Sciences.

[103]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[104]  Barney S. Graham,et al.  Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen , 2017, Proceedings of the National Academy of Sciences.

[105]  G. Whittaker,et al.  Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. , 2016, Bio-protocol.

[106]  David Baker,et al.  Accurate design of megadalton-scale two-component icosahedral protein complexes , 2016, Science.

[107]  Lisa E. Gralinski,et al.  SARS-like WIV1-CoV poised for human emergence , 2016, Proceedings of the National Academy of Sciences.

[108]  F. Dimaio,et al.  Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer , 2016, Nature.

[109]  Lisa E. Gralinski,et al.  A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence , 2015, Nature Medicine.

[110]  Lisa E. Gralinski,et al.  A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge , 2011, Journal of Virology.

[111]  Y. Matsuura,et al.  Acquisition of Complement Resistance through Incorporation of CD55/Decay-Accelerating Factor into Viral Particles Bearing Baculovirus GP64 , 2010, Journal of Virology.

[112]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[113]  R. Baric,et al.  Structural Basis for Potent Cross-Neutralizing Human Monoclonal Antibody Protection against Lethal Human and Zoonotic Severe Acute Respiratory Syndrome Coronavirus Challenge , 2008, Journal of Virology.

[114]  Ralph Baric,et al.  A Mouse-Adapted SARS-Coronavirus Causes Disease and Mortality in BALB/c Mice , 2007, PLoS pathogens.

[115]  Jaap Goudsmit,et al.  Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants , 2006, PLoS medicine.

[116]  Nuno R. Faria,et al.  Genomic characterisation of an emergent SARS- CoV-2 lineage in Manaus: preliminary findings , 2021 .