Optimal Design of Process Variables in Multi-Pass Wire Drawing by Genetic Algorithms

This paper describes a new method for design optimization of process variables in multi-pass wire drawing processes. An adaptive Micro Genetic Algorithm (μGA) has been implemented for minimizing the difference between maximum and minimum effective plastic strains in the end product and also for minimizing the total deformation energy in a multi-pass wire drawing process. The chosen design variables are die angles, area reduction ratios, and the total number of passes. Significant improvements in the simulated product quality and reduction in the number of passes have been observed as a result of the Genetic Algorithm based optimization process. The choice of annealing passes for further reduction of the total deformation energy and residual stresses has also been studied.