Morphological hat-transform scale spaces and their use in texture classification

In this paper we present a multiscale morphological method for use in texture classification. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built. The most important features are extracted from the scale spaces by unsupervised cluster analysis, and the resulting pattern vectors provide the input of a decision tree classifier. We obtain 93.5 % correct classification for the Brodatz texture database.

[1]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[2]  Mohamed A. Deriche,et al.  Scale-Space Properties of the Multiscale Morphological Dilation-Erosion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  J. Andrew Bangham,et al.  Scale-space from nonlinear filters , 1995, Proceedings of IEEE International Conference on Computer Vision.

[4]  D Marr,et al.  Bandpass channels, zero-crossings, and early visual information processing. , 1979, Journal of the Optical Society of America.

[5]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[6]  H. Heijmans Morphological image operators , 1994 .

[7]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[8]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[9]  Peter F. M. Nacken Chamfer metrics, the medial axis and mathematical morphology , 2004, Journal of Mathematical Imaging and Vision.

[10]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[11]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[12]  Josef Kittler,et al.  Robust and Efficient Shape Indexing through Curvature Scale Space , 1996, BMVC.

[13]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tony Lindeberg,et al.  Direct computation of shape cues using scale-adapted spatial derivative operators , 1996, International Journal of Computer Vision.

[15]  I. Jolliffe Principal Component Analysis , 2002 .

[16]  Guido Gerig,et al.  Multiscale detection of curvilinear structures in 2-D and 3-D image data , 1995, Proceedings of IEEE International Conference on Computer Vision.

[17]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[18]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[20]  J. Andrew Bangham,et al.  Scale-Space From Nonlinear Filters , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Henk J. A. M. Heijmans,et al.  Nonlinear multiresolution signal decomposition schemes. I. Morphological pyramids , 2000, IEEE Trans. Image Process..

[22]  Miroslaw Bober,et al.  MPEG-7 visual shape descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[23]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[24]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[25]  Josef Kittler,et al.  Efficient and Robust Retrieval by Shape Content through Curvature Scale Space , 1998, Image Databases and Multi-Media Search.

[26]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[27]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[28]  J. Andrew Bangham,et al.  Morphological scale-space preserving transforms in many dimensions , 1996, J. Electronic Imaging.

[29]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[30]  Michael H. F. Wilkinson,et al.  A Comparison of Algorithms for Connected Set Openings and Closings , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Michael Werman,et al.  Computing 2-D Min, Median, and Max Filters , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[33]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Chung-Nim Lee,et al.  Scale-Space Using Mathematical Morphology , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Jos B. T. M. Roerdink,et al.  Identification by mathematical morphology , 2002 .

[36]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[37]  Ronald Jones,et al.  Connected Filtering and Segmentation Using Component Trees , 1999, Comput. Vis. Image Underst..

[38]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[39]  Tony Lindeberg,et al.  Shape from texture from a multi-scale perspective , 1993, 1993 (4th) International Conference on Computer Vision.

[40]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[41]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  John Goutsias,et al.  Centrum Voor Wiskunde En Informatica Reportrapport Multiresolution Signal Decomposition Schemes. Part 1: Linear and Morphological Pyramids Multiresolution Signal Decomposition Schemes. Part 1: Linear and Morphological Pyramids , 2022 .

[43]  Paul L. Rosin Measuring shape: ellipticity, rectangularity, and triangularity , 2003, Machine Vision and Applications.

[44]  Henk J. A. M. Heijmans Connected Morphological Operators for Binary Images , 1999, Comput. Vis. Image Underst..

[45]  Peter J. Burt,et al.  Smart sensing within a pyramid vision machine , 1988, Proc. IEEE.

[46]  H. Heijmans,et al.  Multiresolution signal decomposition schemes , 1998 .

[47]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .