An augmented Lagrangian approach for sparse principal component analysis
暂无分享,去创建一个
[1] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[2] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[3] Renato D. C. Monteiro,et al. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..
[4] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[5] Alexandre d'Aspremont,et al. Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..
[6] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[7] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[8] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[9] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[10] Ajay N. Jain,et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. , 2006, Cancer cell.
[11] S. M. Robinson. Local structure of feasible sets in nonlinear programming , 1983 .
[12] D. Botstein,et al. Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[13] Shai Avidan,et al. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.
[14] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[15] Paul Tseng,et al. A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..
[16] Ash A. Alizadeh,et al. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.
[17] J. N. R. Jeffers,et al. Two Case Studies in the Application of Principal Component Analysis , 1967 .
[18] V. Bruce,et al. Face processing: Human perception and principal components analysis , 1996, Memory & cognition.
[19] Y. Nesterov. Gradient methods for minimizing composite objective function , 2007 .
[20] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[21] S. M. Robinson. Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .
[22] Ying Xiong. Nonlinear Optimization , 2014 .
[23] José Mario Martínez,et al. Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..
[24] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[25] I. Jolliffe. Rotation of principal components: choice of normalization constraints , 1995 .
[26] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[27] Jianhua Z. Huang,et al. Sparse principal component analysis via regularized low rank matrix approximation , 2008 .
[28] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[29] Stephen J. Wright,et al. Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.
[30] I. Jolliffe,et al. A Modified Principal Component Technique Based on the LASSO , 2003 .
[31] Michael L. Overton,et al. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..