Intracellular Calcium Regulation by Burst Discharge Determines Bidirectional Long-Term Synaptic Plasticity at the Cerebellum Input Stage

Variations in intracellular calcium concentration ([Ca2+]i) provide a critical signal for synaptic plasticity. In accordance with Hebb's postulate (Hebb, 1949), an increase in postsynaptic [Ca2+]i can induce bidirectional changes in synaptic strength depending on activation of specific biochemical pathways (Bienenstock et al., 1982; Lisman, 1989; Stanton and Sejnowski, 1989). Despite its strategic location for signal processing, spatiotemporal dynamics of [Ca2+]i changes and their relationship with synaptic plasticity at the cerebellar mossy fiber (mf)-granule cell (GrC) relay were unknown. In this paper, we report the plasticity/[Ca2+]i relationship for GrCs, which are typically activated by mf bursts (Chadderton et al., 2004). Mf bursts caused a remarkable [Ca2+]i increase in GrC dendritic terminals through the activation of NMDA receptors, metabotropic glutamate receptors (probably acting through IP3-sensitive stores), voltage-dependent calcium channels, and Ca2+-induced Ca2+ release. Although [Ca2+]i increased with the duration of mf bursts, long-term depression was found with a small [Ca2+]i increase (bursts <250 ms), and long-term potentiation (LTP) was found with a large [Ca2+]i increase (bursts >250 ms). LTP and [Ca2+]i saturated for bursts >500 ms and with theta-burst stimulation. Thus, bursting enabled a Ca2+-dependent bidirectional Bienenstock-Cooper-Munro-like learning mechanism providing the cellular basis for effective learning of burst patterns at the input stage of the cerebellum.

[1]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[2]  Fabrizio Gabbiani,et al.  Burst firing in sensory systems , 2004, Nature Reviews Neuroscience.

[3]  D. Linden,et al.  Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse , 1998, Neuron.

[4]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[5]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[6]  Egidio D'Angelo,et al.  NO enhances presynaptic currents during cerebellar mossy fiber-granule cell LTP. , 2003, Journal of neurophysiology.

[7]  Mark Farrant,et al.  Maturation of EPSCs and Intrinsic Membrane Properties Enhances Precision at a Cerebellar Synapse , 2003, The Journal of Neuroscience.

[8]  J. Lisman Long-term potentiation: outstanding questions and attempted synthesis. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  V Taglietti,et al.  Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells: Experimental Evidence and Modeling of a Slow K+-Dependent Mechanism , 2001, The Journal of Neuroscience.

[10]  J. Hámori,et al.  Quantitative morphology and synaptology of cerebellar glomeruli in the rat , 1988, Anatomy and Embryology.

[11]  Egidio D'Angelo,et al.  NMDA Receptor 2 (NR2) C-Terminal Control of NR Open Probability Regulates Synaptic Transmission and Plasticity at a Cerebellar Synapse , 2002, The Journal of Neuroscience.

[12]  Christophe Pouzat,et al.  Action potential‐evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones , 2000, The Journal of physiology.

[13]  Philippe Isope,et al.  Involvement of Presynaptic N-Methyl-D-Aspartate Receptors in Cerebellar Long-Term Depression , 2002, Neuron.

[14]  E. D'Angelo,et al.  Different proportions of N-methyl-d-aspartate and non-N-methyl-d-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum , 1993, Neuroscience.

[15]  J. Lacaille,et al.  Depolarization-Induced Long-Term Depression at Hippocampal Mossy Fiber-CA3 Pyramidal Neuron Synapses , 2003, The Journal of Neuroscience.

[16]  Egidio D'Angelo,et al.  Altered Neuronal Excitability in Cerebellar Granule Cells of Mice Lacking Calretinin , 2003, The Journal of Neuroscience.

[17]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[18]  W. Singer,et al.  Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation , 1993, Trends in Neurosciences.

[19]  G. Collingridge,et al.  L-glutamate and acetylcholine mobilise Ca2+ from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca2+ sensitivities. , 1992, Cell calcium.

[20]  R. Silver,et al.  Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ , 1992, Nature.

[21]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[22]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[23]  J. Lisman,et al.  A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[25]  E. D’Angelo,et al.  Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. , 1995, The Journal of physiology.

[26]  E. D’Angelo,et al.  Age-dependent expression of high-voltage activated calcium currents during cerebellar granule cell development in situ , 1994, Pflügers Archiv.

[27]  Egidio D'Angelo,et al.  Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. , 2002, Journal of neurophysiology.

[28]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[29]  V Taglietti,et al.  Synaptic activation of Ca2+ action potentials in immature rat cerebellar granule cells in situ. , 1997, Journal of neurophysiology.

[30]  E. D’Angelo,et al.  The relationship between synaptogenesis and expression of voltage-dependent currents in cerebellar granule cells in situ , 1994, Journal of Physiology-Paris.

[31]  A. C. Greenwood,et al.  Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above a threshold. , 2001, Journal of neurophysiology.

[32]  R. Challiss,et al.  Agonist‐Evoked Ca2+ Mobilization from Stores Expressing Inositol 1,4,5‐Trisphosphate Receptors and Ryanodine Receptors in Cerebellar Granule Neurones , 1996, Journal of neurochemistry.

[33]  K. Doya,et al.  Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control , 2001, Neuroscience.

[34]  W. Singer,et al.  Relation Between Dendritic Ca2+ Levels and the Polarity of Synaptic Long‐term Modifications in Rat Visual Cortex Neurons , 1997, The European journal of neuroscience.

[35]  E. D’Angelo,et al.  Differential Long‐lasting Potentiation of the NMDA and Non‐NMDA Synaptic Currents Induced by Metabotropic and NMDA Receptor Coactivation in Cerebellar Granule Cells , 1996, The European journal of neuroscience.

[36]  C. Downes,et al.  Differential coupling of G‐protein‐linked receptors to Ca2+ mobilization through inositol(1,4,5)trisphosphate or ryanodine receptors in cerebellar granule cells in primary culture , 1999, The European journal of neuroscience.

[37]  E. D’Angelo,et al.  Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. , 1999, Journal of neurophysiology.

[38]  T. Sejnowski,et al.  Associative long-term depression in the hippocampus induced by hebbian covariance , 1989, Nature.

[39]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[40]  Prof. Dr. Sanford L. Palay,et al.  Cerebellar Cortex , 1974, Springer Berlin Heidelberg.

[41]  V Taglietti,et al.  Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. , 1998, Journal of neurophysiology.

[42]  H. Noda,et al.  Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation , 1980, The Journal of physiology.

[43]  T. H. Brown,et al.  Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. , 1994, Journal of neurophysiology.

[44]  A. Irving,et al.  Interactions between Ca2+ mobilizing mechanisms in cultured rat cerebellar granule cells. , 1992, The Journal of physiology.

[45]  E. D’Angelo,et al.  Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum , 2001, Nature Neuroscience.

[46]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[47]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[48]  E. D’Angelo,et al.  Increased neurotransmitter release during long‐term potentiation at mossy fibre–granule cell synapses in rat cerebellum , 2004, The Journal of physiology.

[49]  Alan Fine,et al.  Calcium Stores in Hippocampal Synaptic Boutons Mediate Short-Term Plasticity, Store-Operated Ca2+ Entry, and Spontaneous Transmitter Release , 2001, Neuron.

[50]  Olivier J. M. D. Coenen,et al.  Model of granular layer encoding in the cerebellum , 2004, Neurocomputing.

[51]  Roger Y Tsien,et al.  A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. T. Yue,et al.  Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels , 2001, Nature.

[53]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[54]  Terrence J Sejnowski,et al.  Complexity of calcium signaling in synaptic spines. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[55]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  Robert S. Zucker,et al.  Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP , 1996, Neuron.

[57]  C. Hansel,et al.  Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control , 2004, Neuron.

[58]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[59]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[60]  R Masgrau,et al.  Characterization of the metabotropic glutamate receptors mediating phospholipase C activation and calcium release in cerebellar granule cells: calcium‐dependence of the phospholipase C response , 2001, The European journal of neuroscience.

[61]  M. W. Brown,et al.  An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat , 2001, The Journal of physiology.

[62]  Richard G M Morris,et al.  Introduction. Long-term potentiation and structure of the issue. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[64]  S. M. Goldin,et al.  Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. , 1991, Science.

[65]  A. Contestabile,et al.  NMDA receptor‐dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development , 2002, The European journal of neuroscience.

[66]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[67]  J E Lisman,et al.  Three Ca2+ levels affect plasticity differently: the LTP zone, the LTD zone and no man's land , 2001, The Journal of physiology.

[68]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[69]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.