Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples

[1]  L. A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995) , 1995 .

[2]  G. Cooper The Cell: A Molecular Approach , 1996 .

[3]  S. Hammarström The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. , 1999, Seminars in cancer biology.

[4]  M. Kats,et al.  Spectroscopic determination of protein concentrations from proteinase K digests. , 2002, Analytical biochemistry.

[5]  K. Chattopadhyay,et al.  Synthesis and Characterization of Nano-Crystalline Fluorine-Doped Tin Oxide Thin Films by Sol-Gel Method , 2003 .

[6]  H. Ju,et al.  A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer , 2006 .

[7]  Y. Chai,et al.  Electrochemical Immunoanalysis for Carcinoembryonic Antigen Based on Multilayer Architectures of Gold Nanoparticles and Polycation Biomimetic Interface on Glassy Carbon Electrode , 2006 .

[8]  L. Nie,et al.  A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film. , 2007, Biosensors & bioelectronics.

[9]  S. Ramos Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. , 2008, Molecular nutrition & food research.

[10]  P. Kofinas,et al.  Selective binding of carcinoembryonic antigen using imprinted polymeric hydrogels. , 2008, Journal of biomedical materials research. Part A.

[11]  J. M. Madurro,et al.  Electropolymerization of 3-aminophenol on carbon graphite surface: Electric and morphologic properties , 2008 .

[12]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[13]  Jianlong Zhao,et al.  Novel colorimetric enzyme immunoassay for the detection of carcinoembryonic antigen. , 2010, Talanta.

[14]  Y. Chai,et al.  A novel immunosensor for carcinoembryonic antigen based on poly(diallyldimethylammonium chloride) protected prussian blue nanoparticles and double-layer nanometer-sized gold particles , 2010 .

[15]  Xiaoyan Yang,et al.  Luminol/antibody labeled gold nanoparticles for chemiluminescence immunoassay of carcinoembryonic antigen. , 2010, Analytica chimica acta.

[16]  Yongmei Yin,et al.  Colorimetric Immunoassay for Detection of Tumor Markers , 2010, International journal of molecular sciences.

[17]  B. Rigas,et al.  Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses , 2010 .

[18]  R. Mayeux Biomarkers: Potential uses and limitations , 2004, NeuroRX.

[19]  S. Ahmed,et al.  Efficiency of diagnostic biomarkers among colonic schistosomiasis Egyptian patients. , 2011, Memorias do Instituto Oswaldo Cruz.

[20]  Sutichai Chaisitsak,et al.  Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors , 2011, Sensors.

[21]  S. Khondaker,et al.  Graphene based materials: Past, present and future , 2011 .

[22]  Zhanfang Ma,et al.  A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane. , 2011, Biosensors & bioelectronics.

[23]  Yan Li,et al.  A sensitive label-free amperometric CEA immunosensor based on graphene-nafion nanocomposite film as an enhanced sensing platform. , 2011, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[24]  A. Govind,et al.  Optical and photocatalytic properties of heavily F(-)-doped SnO2 nanocrystals by a novel single-source precursor approach. , 2011, Inorganic chemistry.

[25]  Y. Shim,et al.  A Glucose Sensor Based on an Aminophenyl Boronic Acid Bonded Conducting Polymer , 2011 .

[26]  W. Kutner,et al.  Electrochemically synthesized polymers in molecular imprinting for chemical sensing , 2012, Analytical and Bioanalytical Chemistry.

[27]  A. Scian,et al.  Electrosynthesis and Spectroscopic Characterization of Poly(o-Aminophenol) Film Electrodes , 2012 .

[28]  A. Dasgupta,et al.  Diagnostic Role of Tumour Markers CEA, CA15-3, CA19-9 and CA125 in Lung Cancer , 2012, Indian Journal of Clinical Biochemistry.

[29]  J. Hurley,et al.  The molecular genetics of colorectal cancer , 2013, Frontline Gastroenterology.

[30]  Jing‐Juan Xu,et al.  A branched electrode based electrochemical platform: towards new label-free and reagentless simultaneous detection of two biomarkers. , 2013, Chemical communications.

[31]  James T. Johnson,et al.  A Comparison of CA242 with Twelve Other Tumor Antigens for the Serodiagnosis of Pancreatic, Gastric, and Other Gastrointestinal Cancers , 2013 .

[32]  A. Sarkar,et al.  Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates , 2013, Nanomaterials.

[33]  A. Öpik,et al.  Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G , 2013, Microchimica Acta.

[34]  X. Cui,et al.  Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. , 2014, Biosensors & bioelectronics.

[35]  A. Cass,et al.  Protein-responsive polymers for point-of-care detection of cardiac biomarker , 2014 .

[36]  Seyin Zou,et al.  Highly sensitive carcinoembryonic antigen detection using Ag@Au core-shell nanoparticles and dynamic light scattering , 2014 .

[37]  S. Laurenson,et al.  Label-free electrochemical biosensors for clinical diagnostic , 2014, 2014 Cairo International Biomedical Engineering Conference (CIBEC).

[38]  R. S. Conlan,et al.  Label-free human chorionic gonadotropin detection at picogram levels using oriented antibodies bound to graphene screen-printed electrodes. , 2014, Journal of materials chemistry. B.

[39]  G. Thenmozhi,et al.  Isomers of Poly Aminophenol: Chemical Synthesis, Characterization, and Its Corrosion Protection Aspect on Mild Steel in 1 M HCl , 2014 .

[40]  Liliana A. A. N. A. Truta,et al.  Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: application over different conductive materials for potentiometric transduction. , 2014, Electrochimica acta.

[41]  D. Krishnaiah,et al.  Preparation and characterization of activated carbon from Typha orientalis leaves , 2015, International Journal of Industrial Chemistry.

[42]  R. Scipioni,et al.  Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives , 2014, Membranes.

[43]  E. Ngameni,et al.  Carcinoembryonic antigen immunosensor developed with organoclay nanogold composite film , 2014 .

[44]  E. Bahadır,et al.  Applications of electrochemical immunosensors for early clinical diagnostics. , 2015 .

[45]  Monika,et al.  Chemical modification of poly(vinyl chloride) for blood and cellular biocompatibility , 2015 .

[46]  N. Bragazzi,et al.  Cancer prevention: state of the art and future prospects , 2015, Journal of preventive medicine and hygiene.

[47]  C. Mathers,et al.  Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 , 2015, International journal of cancer.

[48]  Liliana A. A. N. A. Truta,et al.  Sol-gel chemistry in biosensing devices of electrical transduction: application to CEA cancer biomarker. , 2015, Current topics in medicinal chemistry.

[49]  A. Öpik,et al.  Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection. , 2016, Analytica chimica acta.

[50]  J. Riu,et al.  Plastic antibody for the electrochemical detection of bacterial surface proteins , 2016 .

[51]  F. T. Moreira,et al.  Screen-printed electrode produced by printed-circuit board technology. Application to Cancer Biomarker Detection by means of plastic antibody as sensing material. , 2016, Sensors and actuators. B, Chemical.

[52]  Liliana A. A. N. A. Truta,et al.  Conductive Paper with Antibody-Like Film for Electrical Readings of Biomolecules , 2016, Scientific Reports.

[53]  Ana P. M. Tavares,et al.  Paper-Based Sensing Device for Electrochemical Detection of Oxidative Stress Biomarker 8-Hydroxy-2′-deoxyguanosine (8-OHdG) in Point-of-Care , 2017, Scientific Reports.

[54]  Tibor Pasinszki,et al.  Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis , 2017, Sensors.

[55]  E. Goldman,et al.  Improving biosensing activity to carcinoembryonic antigen with orientated single domain antibodies , 2017, Heliyon.

[56]  Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection , 2018, Scientific Reports.

[57]  Jing-Fu Qiu,et al.  Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification , 2018, Microchimica Acta.

[58]  U. Wollenberger,et al.  Fully electrochemical MIP sensor for artemisinin , 2018, Sensors and Actuators B: Chemical.

[59]  A Novel Electrochemical Aptasensor for Carcinoembryonic Antigen Detection Based on Target‐induced Bridge Assembly , 2018 .

[60]  Xuefang Gu,et al.  Electrochemical detection of carcinoembryonic antigen. , 2018, Biosensors & bioelectronics.

[61]  Liliana A. A. N. A. Truta,et al.  A dye-sensitized solar cell acting as the electrical reading box of an immunosensor: Application to CEA determination. , 2018, Biosensors & bioelectronics.

[62]  A. Öpik,et al.  Preparation of a surface-grafted protein-selective polymer film by combined use of controlled/living radical photopolymerization and microcontact imprinting , 2018 .

[63]  S. M. Taghdisi,et al.  A label-free aptasensor for carcinoembryonic antigen detection using three-way junction structure and ATMND as a fluorescent probe , 2018 .

[64]  Yanming Liu,et al.  An electrochemiluminescence ratiometric self-calibrated biosensor for carcinoembryonic antigen detection , 2018 .

[65]  Liping Jia,et al.  Perylenetetracarboxylic acid and carbon quantum dots assembled synergistic electrochemiluminescence nanomaterial for ultra-sensitive carcinoembryonic antigen detection. , 2018, Biosensors & bioelectronics.