Computer simulation studies of anisotropic systems. XXX. The phase behavior and structure of a Gay–Berne mesogen

The Gay–Berne potential is proving to be a valuable model with which to investigate the behavior of liquid crystals using computer simulation techniques. The potential contains four independent parameters which control the anisotropy in the attractive and repulsive interactions. The choice of these parameters is not straightforward and it would seem that those employed in some simulations are not strictly appropriate for mesogenic rodlike molecules. Here we report a detailed computer simulation study of Gay–Berne particles interacting via a potential parametrized to reflect the anisotropic forces based on a fit to a realistic mesogenic molecule. The behavior of the phases and the transitions between them have been investigated for a system of 2000 particles using isothermal–isobaric Monte Carlo simulations. At low pressures, this Gay–Berne mesogen exhibits isotropic, smectic A and smectic B phases but, as the pressure is increased, so a nematic phase is added to the sequence. The nature of the phase trans...

[1]  Mark R. Wilson,et al.  Replicated data and domain decomposition molecular dynamics techniques for simulation of anisotropic potentials , 1997 .

[2]  Luis F. Rull,et al.  Liquid crystal phase diagram of the Gay-Berne fluid , 1991 .

[3]  G. R. Luckhurst,et al.  Orientational ordering in the nematic phase of a thermotropic liquid crystal: A small angle neutron scattering study , 1996 .

[4]  D. R. Johnson,et al.  Possible Second-Order Nematic-Smectic-A Phase Transition , 1972 .

[5]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[6]  W. L. Mcmillan,et al.  Simple Molecular Model for the Smectic A Phase of Liquid Crystals , 1971 .

[7]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems: XVII. The Gay-Berne model nematogen , 1987 .

[8]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[9]  G. R. Luckhurst,et al.  The Molecular physics of liquid crystals , 1979 .

[10]  J. Corner,et al.  The second virial coefficient of a gas of non-spherical molecules , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  B. Berne Modification of the overlap potential to mimic a linear site-site potential , 1981 .

[12]  S. Diele,et al.  Investigation of a Smectic Tetramorphous Substance , 1971 .

[13]  Frenkel,et al.  Transverse interlayer order in lyotropic smectic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .

[15]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems: XXI. Parametrization of the Gay-Berne potential for model mesogens , 1993 .

[16]  W. L. Mcmillan X-Ray Scattering from Liquid Crystals. I. Cholesteryl Nonanoate and Myristate , 1972 .

[17]  R. Eppenga,et al.  Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets , 1984 .

[18]  G. R. Luckhurst,et al.  The Molecular Dynamics of Liquid Crystals , 1994 .

[19]  J. R. Mccoll Effect of pressure on order in the nematic liquid crystal p-azoxyanisole , 1972 .

[20]  L. V. Woodcock Isothermal molecular dynamics calculations for liquid salts , 1971 .

[21]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XX: On the validity of the Maier-Saupe approximations for the Gay-Berne nematogen , 1992 .

[22]  Bruce J. Berne,et al.  Gaussian Model Potentials for Molecular Interactions , 1972 .

[23]  S. Kondo,et al.  Monte Carlo simulations on mesophase formation using dipolar Gay–Berne model , 1996 .

[24]  Jacques Vieillard-Baron,et al.  The equation of state of a system of hard spherocylinders , 1974 .

[25]  G. R. Luckhurst,et al.  Computer-simulation studies of anisotropic systems. Part XXIV.—Constant-pressure investigations of the smectic B phase of the Gay–Berne mesogen , 1995 .

[26]  H. F. King Isobaric versus Canonical Ensemble Formalism for Monte Carlo Studies of Liquids , 1972 .

[27]  G. R. Luckhurst,et al.  An electron resonance investigation of molecular motion in the smectic A mesophase of a liquid crystal , 1974 .

[28]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XXVI. Monte Carlo investigations of a Gay–Berne discotic at constant pressure , 1996 .

[29]  J. Talbot,et al.  A comparison between molecular-dynamics and theoretical results for the structure of fluids of hard ellipsoids , 1990 .

[30]  B. Cabane,et al.  Effect of Pressure on the Mesomorphic Transitons in Para-Azoxyanisole (PAA) , 1971 .

[31]  W. H. Jeu,et al.  X-ray study of the sharpness of the smectic A layer structure , 1989 .

[32]  Cleaver,et al.  Extension and generalization of the Gay-Berne potential. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  K. Strandburg Bond-orientational order in condensed matter systems , 1992 .

[34]  J. Stelzer,et al.  Molecular dynamics simulations of a Gay–Berne nematic liquid crystal: Elastic properties from direct correlation functions , 1994 .

[35]  Luis F. Rull,et al.  Observation, prediction and simulation of phase transitions in complex fluids , 1995 .

[36]  G. Penna,et al.  A rigid core‐flexible chain model for mesogenic molecules in molecular dynamics simulations of liquid crystals , 1996 .

[37]  G. R. Luckhurst,et al.  A molecular field theory of smectic A liquid crystals: a simpler alternative to the McMillan theory , 1985 .

[38]  G. R. Luckhurst,et al.  Molecular Organisation in the Smectic Mesophase of Ethyl 4-azoxybenzoate , 1972 .

[39]  G. R. Luckhurst,et al.  Computer simulation studies of anisotropic systems. XIX. Mesophases formed by the Gay-Berne model mesogen , 1990 .