THE EFFECTS OF THE LOCAL ENVIRONMENT AND STELLAR MASS ON GALAXY QUENCHING TO z ∼ 3

We study the effects of the local environment and stellar mass on galaxy properties using a mass complete sample of quiescent and star-forming systems in the COSMOS field at . We show that at the median star formation rate (SFR) and specific SFR (sSFR) of all galaxies depend on the environment, but they become independent of the environment at z ≳ 1. However, we find that only for star-forming galaxies, the median SFR and sSFR are similar in different environments regardless of redshift and stellar mass. We find that the quiescent fraction depends on the environment at z ≲ 1 and on stellar mass out to z ∼ 3. We show that at z ≲ 1 galaxies become quiescent faster in denser environments and that the overall environmental quenching efficiency increases with cosmic time. Environmental and mass quenching processes depend on each other. At z ≲ 1 denser environments more efficiently quench galaxies with higher masses (log( ) ≳ 10.7), possibly due to a higher merger rate of massive galaxies in denser environments. We also show that mass quenching is more efficient in denser regions. We show that the overall mass quenching efficiency ( ) for more massive galaxies (log( ) ≳ 10.2) rises with cosmic time until z ∼ 1 and then flattens out. However, for less massive galaxies, the rise in continues to the present time. Our results suggest that environmental quenching is only relevant at z ≲ 1 and is likely a fast process, whereas mass quenching is the dominant mechanism at z ≳ 1 with a possible stellar feedback physics.

[1]  P. Hopkins,et al.  How Stellar Feedback Simultaneously Regulates Star Formation and Drives Outflows , 2015, 1510.05650.

[2]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[3]  D. Sobral,et al.  The nature of Hα star-forming galaxies at z ∼ 0.4 in and around Cl 0939+4713: the environment matters , 2016, 1603.00462.

[4]  S. Genel HOW ENVIRONMENT AFFECTS GALAXY METALLICITY THROUGH STRIPPING AND FORMATION HISTORY: LESSONS FROM THE ILLUSTRIS SIMULATION , 2016, 1602.02773.

[5]  A. Cimatti,et al.  Non-linearity and environmental dependence of the star-forming galaxies main sequence , 2015, 1511.01899.

[6]  P. Norberg,et al.  ZENS. IV. SIMILAR MORPHOLOGICAL CHANGES ASSOCIATED WITH MASS QUENCHING AND ENVIRONMENT QUENCHING AND THE RELATIVE IMPORTANCE OF BULGE GROWTH VERSUS THE FADING OF DISKS , 2014, 1402.1172.

[7]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function , 2015, 1511.01145.

[8]  B. Mobasher,et al.  SPECTROSCOPIC STUDY OF STAR-FORMING GALAXIES IN FILAMENTS AND THE FIELD AT z ∼ 0.5: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF ELECTRON DENSITY , 2015, 1510.05009.

[9]  W. Everett,et al.  Probing star formation in the dense environments of z 1 lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope , 2015, 1510.01359.

[10]  R. Demarco,et al.  EVIDENCE FOR THE UNIVERSALITY OF PROPERTIES OF RED-SEQUENCE GALAXIES IN X-RAY- AND RED-SEQUENCE-SELECTED CLUSTERS AT z ∼ 1 , 2015, 1510.00104.

[11]  A. Cimatti,et al.  Reconstructing the galaxy density field with photometric redshifts: I. Methodology and validation on stellar mass functions , 2015, 1509.08964.

[12]  L. Kewley,et al.  ZFIRE: GALAXY CLUSTER KINEMATICS, Hα STAR FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT z cl = 1.6233 ?> , 2015, 1508.03057.

[13]  M. Peth,et al.  EVOLUTION OF STAR FORMATION PROPERTIES OF HIGH-REDSHIFT CLUSTER GALAXIES SINCE z = 2 , 2015, 1508.01294.

[14]  A. Coil,et al.  THE MOSDEF SURVEY: DISSECTING THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION USING Hα AND Hβ EMISSION LINES AT z ∼ 2 , 2015, 1507.03017.

[15]  D. Schneider,et al.  SURVEYING GALAXY PROTO-CLUSTERS IN EMISSION: A LARGE-SCALE STRUCTURE AT z = 2.44 AND THE OUTLOOK FOR HETDEX , 2015, 1505.03877.

[16]  B. Mobasher,et al.  A COMPARATIVE STUDY OF DENSITY FIELD ESTIMATION FOR GALAXIES: NEW INSIGHTS INTO THE EVOLUTION OF GALAXIES WITH ENVIRONMENT IN COSMOS OUT TO z ∼ 3 , 2015, 1503.07879.

[17]  H. Rottgering,et al.  MC2: boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19 , 2015, 1503.02076.

[18]  I. Smail,et al.  Evolution of the H β + [O iii] and [O ii] luminosity functions and the [O ii] star formation history of the Universe up to z ∼ 5 from HiZELS , 2015, 1503.00004.

[19]  Gepi,et al.  AVOIDING PROGENITOR BIAS: THE STRUCTURAL AND MASS EVOLUTION OF BRIGHTEST GROUP AND CLUSTER GALAXIES IN HIERARCHICAL MODELS SINCE z ≲ 1 , 2015, 1501.02800.

[20]  D. Elbaz,et al.  The reversal of the SF–density relation in a massive, X-ray-selected galaxy cluster at z = 1.58: results from Herschel , 2014, 1412.5188.

[21]  A. Fontana,et al.  Deconstructing the Galaxy Stellar Mass Function with UKIDSS and CANDELS: The Impact of Colour, Structure and Environment , 2014, 1411.3339.

[22]  H. Hoekstra,et al.  The rise and fall of star formation in z ~ 0.2 merging galaxy clusters , 2014, 1410.2891.

[23]  C. Conselice,et al.  Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS , 2014, 1406.6058.

[24]  Ichi Tanaka,et al.  An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z > 2 , 2014, 1406.5219.

[25]  R. Dav'e,et al.  Hot gas in massive haloes drives both mass quenching and environment quenching , 2014, 1405.1043.

[26]  M. Blanton,et al.  PRIMUS: EFFECTS OF GALAXY ENVIRONMENT ON THE QUIESCENT FRACTION EVOLUTION AT z < 0.8 , 2014, 1412.7162.

[27]  G. Gavazzi,et al.  On the origin of the faint-end of the red sequence in high-density environments , 2014, 1411.5513.

[28]  A. Cava,et al.  The star formation activity in cosmic voids , 2014, 1410.0023.

[29]  I. Smail,et al.  COSMIC WEB AND STAR FORMATION ACTIVITY IN GALAXIES AT z ∼ 1 , 2014, 1409.7695.

[30]  A. Fontana,et al.  A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT , 2014, 1408.3684.

[31]  S. Lilly,et al.  QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY , 2014, 1408.2553.

[32]  O. Cucciati,et al.  The influence of the environmental history on quenching star formation in a Λ cold dark matter universe , 2014, 1407.5621.

[33]  S. E. Persson,et al.  THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < z < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY , 2014, 1406.6056.

[34]  Ž. Ivezić,et al.  THE ANGULAR CLUSTERING OF WISE-SELECTED ACTIVE GALACTIC NUCLEI: DIFFERENT HALOS FOR OBSCURED AND UNOBSCURED ACTIVE GALACTIC NUCLEI , 2014 .

[35]  M. Hayashi,et al.  THE ENVIRONMENTAL IMPACTS ON THE STAR FORMATION MAIN SEQUENCE: AN Hα STUDY OF THE NEWLY DISCOVERED RICH CLUSTER AT z = 1.52 , 2014, 1405.4165.

[36]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[37]  M. Balogh,et al.  The connection between galaxy structure and quenching efficiency , 2014, 1402.3394.

[38]  I. Smail,et al.  Mapping the large-scale structure around a z=1.46 galaxy cluster in 3D using two adjacent narrow-band filters , 2014, 1401.3919.

[39]  P. Norberg,et al.  THE PAN-STARRS1 MEDIUM-DEEP SURVEY: THE ROLE OF GALAXY GROUP ENVIRONMENT IN THE STAR FORMATION RATE VERSUS STELLAR MASS RELATION AND QUIESCENT FRACTION OUT TO z ∼ 0.8 , 2013, 1312.4736.

[40]  R. Cen ON THE ORIGIN OF THE HUBBLE SEQUENCE: I. INSIGHTS ON GALAXY COLOR MIGRATION FROM COSMOLOGICAL SIMULATIONS , 2013, 1311.5916.

[41]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[42]  I. Smail,et al.  The stellar mass function of star-forming galaxies and the mass-dependent SFR function since z = 2.23 from HiZELS , 2013, 1311.1503.

[43]  Stefano Andreon,et al.  SPECTROSCOPIC CONFIRMATION OF THE RICH z = 1.80 GALAXY CLUSTER JKCS 041 USING THE WFC3 GRISM: ENVIRONMENTAL TRENDS IN THE AGES AND STRUCTURE OF QUIESCENT GALAXIES , 2013, 1310.6754.

[44]  A. Cimatti,et al.  Reversal or no reversal: the evolution of the star formation rate–density relation up to z ∼ 1.6 , 2013, 1310.1398.

[45]  R. Muñoz,et al.  Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5 , 2013, 1307.0003.

[46]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[47]  E. I. Robson,et al.  THE SCUBA-2 COSMOLOGY LEGACY SURVEY: ULTRALUMINOUS STAR-FORMING GALAXIES IN A z = 1.6 CLUSTER , 2013, 1312.3329.

[48]  C. Conselice,et al.  Evidence for a correlation between the sizes of quiescent galaxies and local environment to z ∼ 2 , 2013, 1307.3247.

[49]  C. Collins,et al.  Growth of brightest cluster galaxies via mergers since z = 1 , 2013, 1307.1702.

[50]  A. Finoguenov,et al.  LoCuSS: THE STEADY DECLINE AND SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES OVER THE LAST FOUR BILLION YEARS , 2013, 1307.1135.

[51]  Yen-Ting Lin,et al.  THE STELLAR MASS GROWTH OF BRIGHTEST CLUSTER GALAXIES IN THE IRAC SHALLOW CLUSTER SURVEY , 2013, 1305.5254.

[52]  A. Cimatti,et al.  GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z ∼ 2 , 2013, 1305.3577.

[53]  Qi Guo,et al.  EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1–3 IN COSMOS , 2013, 1303.6689.

[54]  P. Martini,et al.  THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1–1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION , 2013, 1302.6253.

[55]  A. M. Swinbank,et al.  On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ∼ 2 , 2013, 1302.5315.

[56]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[57]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[58]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[59]  B. Garilli,et al.  THE COLORS OF CENTRAL AND SATELLITE GALAXIES IN zCOSMOS OUT TO z ≃ 0.8 AND IMPLICATIONS FOR QUENCHING , 2012, 1211.5607.

[60]  H. Hoekstra,et al.  Evidence for Significant Growth in the Stellar Mass of Brightest Cluster Galaxies over the Past 10 Billion Years , 2012, 1208.5143.

[61]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations , 2012, 1205.3368.

[62]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[63]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[64]  Major-merger Galaxy Pairs in the COSMOS Field—Mass-dependent Merger Rate Evolution since z = 1 , 2012 .

[65]  Mass and Environment as Drivers of Galaxy Evolution. II. The Quenching of Satellite Galaxies as the Origin of Environmental Effects , 2011, 1106.2546.

[66]  H. Hoekstra,et al.  THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.

[67]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[68]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[69]  C. Conselice,et al.  The relationship between star formation rates, local density and stellar mass up to z ~ 3 in the GOODS NICMOS Survey , 2011, 1108.0402.

[70]  H. Hildebrandt,et al.  TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.

[71]  A. Cimatti,et al.  The effect of environment on star forming galaxies at redshift I. First insight from PACS , 2011, 1104.1094.

[72]  Carnegie,et al.  THE STAR-FORMATION-RATE–DENSITY RELATION AT 0.6 < z < 0.9 AND THE ROLE OF STAR-FORMING GALAXIES , 2011, 1104.0934.

[73]  M. Nonino,et al.  EARLY-TYPE GALAXIES AT z ∼ 1.3. III. ON THE DEPENDENCE OF FORMATION EPOCHS AND STAR FORMATION HISTORIES ON STELLAR MASS AND ENVIRONMENT , 2011, 1103.0265.

[74]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[75]  H. Rix,et al.  A COSMIC VARIANCE COOKBOOK , 2010, 1001.1737.

[76]  I. Smail,et al.  The dependence of star formation activity on environment and stellar mass at z∼ 1 from the HiZELS-Hα survey , 2010, 1007.2642.

[77]  J. Dunlop,et al.  REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT z = 1.62 , 2010, 1005.5126.

[78]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[79]  Astronomy,et al.  COMPARING THE RELATION BETWEEN STAR FORMATION AND GALAXY MASS IN DIFFERENT ENVIRONMENTS , 2009, 0912.1180.

[80]  V. Wild,et al.  Star formation and AGN activity in SDSS cluster galaxies , 2009, 0909.3522.

[81]  D. Thompson,et al.  Tracking the impact of environment on the galaxy stellar mass function up to z ~ 1 in the 10 k zCOSMOS sample , 2009, 0907.0013.

[82]  M. Nonino,et al.  FORMATION EPOCHS, STAR FORMATION HISTORIES, AND SIZES OF MASSIVE EARLY-TYPE GALAXIES IN CLUSTER AND FIELD ENVIRONMENTS AT z = 1.2: INSIGHTS FROM THE REST-FRAME ULTRAVIOLET , 2008, 0806.4604.

[83]  H. Rix,et al.  MAJOR MERGING: THE WAY TO MAKE A MASSIVE, PASSIVE GALAXY , 2009, 0910.4018.

[84]  Leiden,et al.  THE DEPENDENCE OF STAR FORMATION RATES ON STELLAR MASS AND ENVIRONMENT AT z ∼ 0.8 , 2009, 0910.0837.

[85]  B. Garilli,et al.  The zCOSMOS Redshift Survey: How group environment alters global downsizing trends , 2009, 0909.1951.

[86]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[87]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[88]  E. Bell,et al.  THE EFFECT OF DRY MERGERS ON THE COLOR–MAGNITUDE RELATION OF EARLY-TYPE GALAXIES , 2009, 0905.4525.

[89]  Oxford,et al.  THE GREATER IMPACT OF MERGERS ON THE GROWTH OF MASSIVE GALAXIES: IMPLICATIONS FOR MASS ASSEMBLY AND EVOLUTION SINCE z ≃ 1 , 2009, 0902.1188.

[90]  L. Pentericci,et al.  The fraction of quiescent massive galaxies in the early Universe , 2009, 0901.2898.

[91]  S. Bamford,et al.  THE ENVIRONMENTS OF STARBURST AND POST-STARBURST GALAXIES AT z = 0.4–0.8 , 2008, 0811.0252.

[92]  O. Fakhouri,et al.  Environmental dependence of dark matter halo growth – I. Halo merger rates , 2008, 0808.2471.

[93]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[94]  H. Ford,et al.  Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0 , 2008, 0808.0077.

[95]  D. Patton,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOSITY DEPENDENCE OF THE GALAXY MERGER RATE , 2022 .

[96]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[97]  S. Bamford,et al.  The environmental dependence of the chemical properties of star-forming galaxies , 2007, 0709.3794.

[98]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history , 2007, 0706.4089.

[99]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[100]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[101]  K. Sheth,et al.  The effects of environment on morphological evolution between 0 , 2007, astro-ph/0703668.

[102]  K. Sheth,et al.  The Effects of Environment on Morphological Evolution at 0 < z < 1.2 in the COSMOS Survey , 2007 .

[103]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[104]  An increase in the faint red galaxy population in massive clusters since z \~ 0.5. , 2007, astro-ph/0703484.

[105]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[106]  A. Biviano,et al.  The AGN fraction-velocity dispersion relation in clusters of galaxies , 2006, astro-ph/0610738.

[107]  R. Pelló,et al.  The build-up of the colour-magnitude relation in galaxy clusters since z ~ 0.8 , 2006, astro-ph/0610373.

[108]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[109]  D. Kelson,et al.  Spectroscopic Confirmation of a Large Population of Active Galactic Nuclei in Clusters of Galaxies , 2006, astro-ph/0602496.

[110]  G. Gavazzi,et al.  Environmental Effects on Late‐Type Galaxies in Nearby Clusters , 2006, astro-ph/0601108.

[111]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[112]  L. Kewley,et al.  Metallicity and Nuclear Star Formation in Nearby Galaxy Pairs: Evidence for Tidally Induced Gas Flows , 2005, astro-ph/0511119.

[113]  D. Elson,et al.  SPECTROSCOPIC CONFIRMATION OF A LARGE AGN POPULATION IN CLUSTERS OF GALAXIES , 2006 .

[114]  Ž. Ivezić,et al.  The host galaxies of radio-loud active galactic nuclei: mass dependences, gas cooling and active galactic nuclei feedback , 2005 .

[115]  D. Madgwick,et al.  Measuring Galaxy Environments with Deep Redshift Surveys , 2005, astro-ph/0506518.

[116]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[117]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[118]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[119]  Christopher J. Miller,et al.  Galaxy ecology: groups and low-density environments in the SDSS and 2dFGRS , 2003, astro-ph/0311379.

[120]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[121]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[122]  R. Nichol,et al.  The Environment of Active Galactic Nuclei in the Sloan Digital Sky Survey , 2003, astro-ph/0307124.

[123]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[124]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[125]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[126]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[127]  Ram pressure stripping of spiral galaxies in clusters , 1999, astro-ph/9903436.

[128]  Alan Dressler,et al.  A Spectroscopic Catalog of 10 Distant Rich Clusters of Galaxies , 1999, astro-ph/9901263.

[129]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[130]  G. Lake,et al.  Morphological Transformation from Galaxy Harassment , 1997, astro-ph/9701211.

[131]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[132]  L. Hernquist,et al.  Gasdynamics and starbursts in major mergers , 1995, astro-ph/9512099.

[133]  J. Gunn,et al.  The Morphology of Distant Cluster Galaxies. I. HST Observations of CL 0939+4713 , 1994 .

[134]  R. Ellis,et al.  Evidence for systematic evolution in the properties of galaxies in distant clusters , 1993 .

[135]  W. Couch,et al.  A spectroscopic study of three rich galaxy clusters at z = 0.31 , 1987 .

[136]  James E. Gunn,et al.  Spectroscopy of galaxies in distant clusters. II: The population of the 3C 295 cluster , 1983 .

[137]  D. Merritt,et al.  Relaxation and tidal stripping in rich clusters of galaxies. II. Evolution of the luminosity distribution. , 1983 .

[138]  P. Nulsen Transport processes and the stripping of cluster galaxies. , 1982 .

[139]  Rida T. Farouki,et al.  Computer simulations of environmental influences on galaxy evolution in dense clusters. II. rapid tidal encounters , 1981 .

[140]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[141]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .

[142]  L. Cowie,et al.  Thermal evaporation of gas within galaxies by a hot intergalactic medium , 1977, Nature.

[143]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .