Epitaxial growth of β-Ga2O3 thin films on SrTiO3 (111) and (100) substrates by chemical vapor deposition

[1]  G. Deng,et al.  Comparison study of the femtosecond laser-induced surface structures on silicon at an elevated temperature. , 2022, Optics express.

[2]  Q. Feng,et al.  Heteroepitaxial growth and band alignment of β-Ga2O3 on GaN substrate grown by non-vacuum mist-CVD , 2022, Vacuum.

[3]  A. Demkov,et al.  Epitaxial growth of β-Ga2O3 on SrTiO3 (001) and SrTiO3-buffered Si (001) substrates by plasma-assisted molecular beam epitaxy , 2022, Journal of Applied Physics.

[4]  O. Bierwagen,et al.  SnO/β-Ga2O3 heterojunction field-effect transistors and vertical p–n diodes , 2022, Applied Physics Letters.

[5]  Wenliang Wang,et al.  Vertical 1D/2D Heterojunction Architectures for Self-Powered Photodetection Application: GaN Nanorods Grown on Transition Metal Dichalcogenides. , 2022, ACS nano.

[6]  Wenliang Wang,et al.  Wafer‐Scale InN/In2S3 Core–Shell Nanorod Array for Ultrafast Self‐Powered Photodetection , 2021, Advanced Functional Materials.

[7]  Anirban Naskar,et al.  Non-destructive measurement of grinding-induced deformation-depth using grazing incidence X-ray diffraction technique , 2021, NDT & E International.

[8]  Xiaochen Ma,et al.  Effect of epitaxial growth rate on morphological, structural and optical properties of β-Ga2O3 films prepared by MOCVD , 2021, Materials Research Bulletin.

[9]  Y. Hao,et al.  Ultrahigh‐Performance Solar‐Blind Photodetectors Based on High Quality Heteroepitaxial Single Crystalline β‐Ga2O3 Film Grown by Vacuumfree, Low‐Cost Mist Chemical Vapor Deposition , 2021, Advanced Materials Technologies.

[10]  Z. Yin,et al.  Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition , 2021, Vacuum.

[11]  Yue Hao,et al.  Progress in state-of-the-art technologies of Ga2O3 devices , 2021 .

[12]  K. Xie,et al.  Recovery of gallium from yellow phosphorus flue dust by vacuum carbothermal reduction , 2020 .

[13]  O. Bierwagen,et al.  SnO/β-Ga2O3 vertical pn heterojunction diodes , 2020, Applied Physics Letters.

[14]  F. Ren,et al.  A 1.86-kV double-layered NiO/β-Ga2O3 vertical p–n heterojunction diode , 2020 .

[15]  A. Tiwari,et al.  Effect of thickness on the performance of solar blind photodetectors fabricated using PLD grown β-Ga2O3 thin films , 2020 .

[16]  A. Polyakov,et al.  Ultrawide-Bandgap p-n Heterojunction of Diamond/β-Ga2O3 for a Solar-Blind Photodiode , 2020 .

[17]  H. Watanabe,et al.  Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions , 2020 .

[18]  Hongdi Xiao,et al.  Characterization of single crystal β-Ga2O3 films grown on SrTiO3 (100) substrates by MOCVD , 2020 .

[19]  D. Guo,et al.  Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition , 2020 .

[20]  J. Varley,et al.  Self-trapped hole and impurity-related broad luminescence in β-Ga2O3 , 2020 .

[21]  Lang Chen,et al.  Recent progress on the electronic structure, defect, and doping properties of Ga2O3 , 2020, APL Materials.

[22]  Lang Chen,et al.  Fabrication and Interfacial Electronic Structure of Wide Bandgap NiO and Ga2O3 p–n Heterojunction , 2020 .

[23]  Zhenping Wu,et al.  Review of Ga2O3-based optoelectronic devices , 2019 .

[24]  E. Ahmadi,et al.  Materials issues and devices of α- and β-Ga2O3 , 2019, Journal of Applied Physics.

[25]  G. Chang,et al.  Influence of growth temperature on the characteristics of β-Ga2O3 epitaxial films and related solar-blind photodetectors , 2019, Applied Surface Science.

[26]  Tien Khee Ng,et al.  Deep-Ultraviolet Photodetection Using Single-Crystalline β-Ga2O3/NiO Heterojunctions. , 2019, ACS applied materials & interfaces.

[27]  Hongliang Lu,et al.  Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films , 2019, Applied Surface Science.

[28]  H. Chen,et al.  Demonstration of mechanically exfoliated β-Ga2O3/GaN p-n heterojunction , 2019, Applied Physics Letters.

[29]  C. Shan,et al.  Ga2O3 photodetector arrays for solar-blind imaging , 2019, Journal of Materials Chemistry C.

[30]  H. von Wenckstern,et al.  Tin-assisted heteroepitaxial PLD-growth of κ-Ga2O3 thin films with high crystalline quality , 2019, APL Materials.

[31]  M. Yoshimoto,et al.  Microstructures and rotational domains in orthorhombic ε-Ga2O3 thin films , 2018, Japanese Journal of Applied Physics.

[32]  J. L. Lyons A survey of acceptor dopants for β-Ga2O3 , 2018 .

[33]  T. Frauenheim,et al.  Origin of photoluminescence in β−Ga2O3 , 2018 .

[34]  Stephen J. Pearton,et al.  A review of Ga2O3 materials, processing, and devices , 2018 .

[35]  Weihua Tang,et al.  Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector , 2017 .

[36]  P. T. Lai,et al.  High-sensitivity β-Ga 2 O 3 solar-blind photodetector on high-temperature pretreated c-plane sapphire substrate , 2017 .

[37]  Bin Zhao,et al.  An Ultrahigh Responsivity (9.7 mA W−1) Self‐Powered Solar‐Blind Photodetector Based on Individual ZnO–Ga2O3 Heterostructures , 2017 .

[38]  Weihua Tang,et al.  Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction. , 2017, ACS applied materials & interfaces.

[39]  Roger H. French,et al.  Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition , 2016 .

[40]  Jaime A. Freitas,et al.  Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition , 2016 .

[41]  C. G. Van de Walle,et al.  Brillouin zone and band structure of β‐Ga2O3 , 2015 .

[42]  Shinji Nakagomi,et al.  Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction , 2013 .

[43]  A. Janotti,et al.  Controlling the density of the two-dimensional electron gas at the SrTiO 3 /LaAlO 3 interface , 2012, 1212.5947.

[44]  Joel B. Varley,et al.  Role of self-trapping in luminescence and p -type conductivity of wide-band-gap oxides , 2012 .

[45]  C. M. Folkman,et al.  Correction: Corrigendum: Creation of a two-dimensional electron gas at an oxide interface on silicon , 2010, Nature Communications.

[46]  C. Leighton,et al.  Electronic transport in doped SrTiO3: Conduction mechanisms and potential applications , 2010 .