Induced Magnetic Fields in Solar System Bodies

Electromagnetic induction is a powerful technique to study the electrical conductivity of the interior of the Earth and other solar system bodies. Information about the electrical conductivity structure can provide strong constraints on the associated internal composition of planetary bodies. Here we give a review of the basic principles of the electromagnetic induction technique and discuss its application to various bodies of our solar system. We also show that the plasma environment, in which the bodies are embedded, generates in addition to the induced magnetic fields competing plasma magnetic fields. These fields need to be treated appropriately to reliably interpret magnetic field measurements in the vicinity of solar system bodies. Induction measurements are particularly important in the search for liquid water outside of Earth. Magnetic field measurements by the Galileo spacecraft provide strong evidence for a subsurface ocean on Europa and Callisto. The induction technique will provide additional important constraints on the possible subsurface water, when used on future Europa and Ganymede orbiters. It can also be applied to probe Enceladus and Titan with Cassini and future spacecraft.

[1]  Jeffrey S. Kargel,et al.  Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life , 2000 .

[2]  M. Kivelson,et al.  24 - The configuration of Jupiter's magnetosphere , 2004 .

[3]  A. Bower,et al.  Formation and circulation of dense water in the Persian/Arabian Gulf , 2003 .

[4]  Hauke Hussmann,et al.  Interior structure models and tidal Love numbers of Titan , 2003 .

[5]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[6]  M. Kivelson,et al.  The Configuration of Jupiter ’ s Magnetosphere , 2003 .

[7]  David J. Southwood,et al.  Saturnian magnetospheric dynamics: Elucidation of a camshaft model , 2007 .

[8]  L. Vanyan,et al.  Electromagnetic induction in the moon , 1975 .

[9]  G. Siscoe,et al.  Variations in the solar wind stand‐off distance at Mercury , 1975 .

[10]  Fritz M. Neubauer,et al.  Magnetic Fields at Neptune , 1989, Science.

[11]  N. Ness,et al.  Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10 , 1974, Science.

[12]  A. T. Price,et al.  Electromagnetic induction in non-uniform conductors, and the determination of the conductivity of the Earth from terrestrial magnetic variations , 1939 .

[13]  M. Kivelson,et al.  Three‐dimensional MHD simulations of Ganymede’s magnetosphere , 2008 .

[14]  Nicholas Achilleos,et al.  Titan's Magnetic Field Signature During the First Cassini Encounter , 2005, Science.

[15]  N. Ness,et al.  The Magnetic Field of Saturn: Pioneer 11 Observations , 1980, Science.

[16]  K. P. Hand,et al.  Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell , 2007 .

[17]  Donald A. Gurnett,et al.  Galileo Plasma Wave Observations in the Io Plasma Torus and Near Io , 1996, Science.

[18]  S. Carter,et al.  A revised inventory of Antarctic subglacial lakes , 2004, Antarctic Science.

[19]  F. Neubauer,et al.  Influence of the internally induced magnetic field on the plasma interaction of Europa , 2008 .

[20]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[21]  K. Glassmeier,et al.  A feedback dynamo generating Mercury's magnetic field , 2007 .

[22]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[23]  M. Kivelson,et al.  Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations , 2000 .

[24]  N Achilleos,et al.  Cassini Magnetometer Observations During Saturn Orbit Insertion , 2005, Science.

[25]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[26]  C. Sotin,et al.  The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter , 2010 .

[27]  S. Suess,et al.  Compression of the Hermaean magnetosphere by the solar wind , 1979 .

[28]  Charles P. Sonett,et al.  The deep lunar electrical conductivity profile: Structural and thermal inferences , 1982 .

[29]  P. Grindrod,et al.  The long-term stability of a possible aqueous ammonium sulfate ocean inside Titan , 2008 .

[30]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[31]  C. Mayer,et al.  Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes , 2001, Nature.

[32]  M. Dougherty,et al.  The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk , 2007, Science.

[33]  T. Bagdonat,et al.  Plasma environment of Titan: a 3-D hybrid simulation study , 2006 .

[34]  E. Smith,et al.  Saturn's Magnetic Field and Magnetosphere , 1980, Science.

[35]  Fritz M. Neubauer,et al.  The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere , 1998 .

[36]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[37]  William S. Kurth,et al.  Magnetospheric interactions with satellites , 2004 .

[38]  D. Stevenson Planetary magnetic fields , 2003 .

[39]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[40]  Arnaldo Alves Cardoso,et al.  Sources of atmospheric acidity in an agricultural-industrial region of São Paulo State, Brazil , 2003 .

[41]  R. Pappalardo,et al.  Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes , 2008 .

[42]  M. Dougherty,et al.  Comparisons between MHD model calculations and observations of Cassini flybys of Titan , 2006 .

[43]  F. Neubauer Alfvén wings and electromagnetic induction in the interiors: Europa and Callisto , 1999 .

[44]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[45]  C. Russell,et al.  Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer , 2006, Science.

[46]  Dale P. Cruikshank,et al.  Neptune and Triton , 1995 .

[47]  M. Shlomchik,et al.  Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors , 2002, Nature.

[48]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[49]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[50]  N. Olsen,et al.  Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions , 2006 .

[51]  L. L. Hood,et al.  Inhibition of solar wind impingement on Mercury by planetary induction currents , 1979 .

[52]  Rudolf A. Treumann,et al.  Basic Space Plasma Physics , 1996 .

[53]  W. Sill,et al.  Response of the Moon to the time-varying interplanetary magnetic field , 1969 .

[54]  P. Dyal,et al.  Lunar surface magnetometers , 1973 .

[55]  L. Hood,et al.  An upper bound on the radius of a highly electrically conducting lunar core , 1983 .

[56]  Michele K. Dougherty,et al.  Periodic perturbations in Saturn's magnetic field , 2000 .

[57]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[58]  F. Fanale,et al.  An experimental estimate of Europa's “ocean” composition independent of Galileo orbital remote sensing , 2001 .

[59]  F. M. Neubauer,et al.  Nonlinear standing Alfvén wave current system at Io: Theory , 1980 .

[60]  R E Johnson,et al.  The Interaction of the Atmosphere of Enceladus with Saturn's Plasma , 2006, Science.

[61]  D. Strobel,et al.  Interpretation of Galileo's Io plasma and field observations: I0, I24, and I27 flybys and close polar passes , 2002 .

[62]  W. Daily,et al.  Magnetism and the interior of the Moon , 1974 .

[63]  H. Keller,et al.  Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System , 2005, Science.

[64]  Hermann Lühr,et al.  Satellite Observations of Magnetic Fields Due to Ocean Tidal Flow , 2003, Science.

[65]  C. T. Russell,et al.  Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto , 1998, Nature.

[66]  C. Russell,et al.  Searching for liquid water in Europa by using surface observatories. , 2002, Astrobiology.

[67]  Alexandre Caseiro,et al.  Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin , 2007 .

[68]  R. Greenberg,et al.  Eruptions arising from tidally controlled periodic openings of rifts on Enceladus , 2007, Nature.

[69]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[70]  P. Dyal,et al.  Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response] , 1973 .

[71]  W. Ip,et al.  Titan's ionosphere: Model comparisons with Cassini Ta data , 2005 .

[72]  J. Mihalov,et al.  Whole Body Response of the Moon to Electromagnetic Induction by the Solar Wind , 1971, Science.

[73]  C. Russell,et al.  A regular period for Saturn's magnetic field that may track its internal rotation , 2006, Nature.

[74]  B. Anderson,et al.  The Magnetometer Instrument on MESSENGER , 2007 .

[75]  James A. Slavin,et al.  The Structure of Mercury's Magnetic Field from MESSENGER's First Flyby , 2008, Science.

[76]  N. Brilliantov,et al.  Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures , 2008, Nature.

[77]  T. Cravens,et al.  One‐dimensional multispecies magnetohydrodynamic models of the ramside ionosphere of Titan , 1994 .

[78]  И. В. Егоров,et al.  Электромагнитная Индукция В Луне , 1975 .

[79]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[80]  David J. Southwood,et al.  How can Saturn impose its rotation period in a noncorotating magnetosphere , 2003 .

[81]  C. Russell,et al.  A Magnetic Signature at Io: Initial Report from the Galileo Magnetometer , 1996, Science.

[82]  K. Glassmeier,et al.  Induced magnetic field effects at planet Mercury , 2004 .

[83]  F. Flasar,et al.  The ionosphere of Europa from Galileo radio occultations. , 1997, Science.

[84]  Nicholas Achilleos,et al.  Thermal electron periodicities at 20RS in Saturn's magnetosphere , 2008 .

[85]  M. Kivelson,et al.  Limits on an intrinsic dipole moment in Europa , 2004 .

[86]  J. Connerney,et al.  Magnetic Fields at Uranus , 1986, Science.

[87]  B. Langlais,et al.  The Origin of Mercury’s Internal Magnetic Field , 2007 .

[88]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[89]  G. Voigt A mathematical magnetospheric field model with independent physical parameters , 1981 .

[90]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[91]  Astrophysics,et al.  INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. I. DIFFUSION, OHMIC DISSIPATION OF TIME-DEPENDENT FIELD, PLANETARY INFLATION, AND MASS LOSS , 2008, 0804.0975.

[92]  Hauke Hussmann,et al.  Thermal Equilibrium States of Europa's Ice Shell: Implications for Internal Ocean Thickness and Surface Heat Flow , 2002 .

[93]  Fritz M. Neubauer,et al.  Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere , 1998 .

[94]  R. A. Jacobson,et al.  Europa's differentiated internal structure: inferences from four Galileo encounters. , 1997, Science.

[95]  E. Shock,et al.  Composition and stability of salts on the surface of Europa and their oceanic origin , 2001 .

[96]  Uli Auster,et al.  Electromagnetic Induction Effects and Dynamo Action in the Hermean System , 2007 .

[97]  Robert T. Pappalardo,et al.  Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations , 2008 .

[98]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[99]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[100]  N. Olsen Induction studies with satellite data , 1999 .

[101]  T. Rikitake Electromagnetism and the earth's interior , 1966 .

[102]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[103]  M. Zolensky,et al.  Sulfate content of Europa's ocean and shell: evolutionary considerations and some geological and astrobiological implications. , 2003, Astrobiology.

[104]  S. K. Croft,et al.  Voyager 2 at Neptune: Imaging Science Results , 1989, Science.

[105]  Christopher T. Russell,et al.  Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment , 1999 .

[106]  Fritz M. Neubauer,et al.  Time-varying interaction of Europa with the jovian magnetosphere: Constraints on the conductivity of Europa's subsurface ocean , 2007 .

[107]  R. Winglee,et al.  Multi‐fluid simulations of Ganymede's magnetosphere , 2004 .

[108]  F. Neubauer,et al.  Hemisphere coupling in Enceladus' asymmetric plasma interaction , 2007 .

[109]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[110]  W. Ip,et al.  Resistive MHD simulations of Ganymede's magnetosphere 1. Time variabilities of the magnetic field topology , 2002 .

[111]  J. Saur A model of Io's local electric field for a combined Alfvénic and unipolar inductor far‐field coupling , 2004 .

[112]  C. Russell,et al.  Europa's magnetic signature: report from Galileo's pass on 19 December 1996. , 1997, Science.

[113]  H. Kopp,et al.  Crustal structure of the Java margin from seismic wide‐angle and multichannel reflection data , 2002 .

[114]  S. Constable,et al.  Observing geomagnetic induction in magnetic satellite measurements and associated implications for mantle conductivity , 2004 .

[115]  S. P. Srivastava,et al.  Theory of the Magnetotelluric Method for a Spherical Conductor , 1966 .