In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide.
暂无分享,去创建一个
P. F. Martin | Odeta Qafoku | Kevin M Rosso | David W Hoyt | Christopher J Thompson | D. Hoyt | E. Ilton | K. Rosso | J. Hu | C. Thompson | H. Schaef | J. Loring | Jianzhi Hu | A. Felmy | John S Loring | Herbert T Schaef | Romulus V F Turcu | Quin R S Miller | Paul F Martin | Eugene S Ilton | Andrew R Felmy | Quin R. S. Miller | O. Qafoku | R. Turcu | Q. Miller
[1] J. Kubicki,et al. ATR-FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite , 2005 .
[2] B. Lanson,et al. Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties , 2005 .
[3] P. F. Martin,et al. In situ XRD Study of Ca2+ Saturated Montmorillonite (STX-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide , 2012 .
[4] D. Bish,et al. Baseline studies of the clay minerals society source clays: Powder X-ray diffraction analyses , 2001 .
[5] B. Arey,et al. Forsterite [Mg2SiO4)] carbonation in wet supercritical CO2: an in situ high-pressure X-ray diffraction study. , 2013, Environmental science & technology.
[6] T. Plivelic,et al. X-ray studies of carbon dioxide intercalation in Na-fluorohectorite clay at near-ambient conditions. , 2012, Langmuir : the ACS journal of surfaces and colloids.
[7] Jean-Michel Lemieux,et al. Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources , 2011 .
[8] D. Hoyt,et al. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscopy , 2010 .
[9] D. Hoyt,et al. High-pressure magic angle spinning nuclear magnetic resonance. , 2011, Journal of magnetic resonance.
[10] H. Carr,et al. The Principles of Nuclear Magnetism , 1961 .
[11] B. C. Garrett,et al. Infrared and Molecular Dynamics Study of D2O Rotational Relaxation in Supercritical CO2 and Xe , 1996 .
[12] P. F. Martin,et al. Brucite [Mg(OH2)] carbonation in wet supercritical CO2: An in situ high pressure X-ray diffraction study , 2011 .
[13] Irina Gaus,et al. Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks , 2010 .
[14] Herbert T. Schaef,et al. Water reactivity in the liquid and supercritical CO2 phase: Has half the story been neglected? , 2009 .
[15] D. Pines,et al. Real-Time Observation of Carbonic Acid Formation in Aqueous Solution , 2009, Science.
[16] Nannan Yang,et al. Molecular simulation of swelling and structure for Na-Wyoming montmorillonite in supercritical CO2 , 2011 .
[17] Odeta Qafoku,et al. In situ X-ray diffraction study of Na+ saturated montmorillonite exposed to variably wet super critical CO2. , 2012, Environmental science & technology.
[18] Virginie Marry,et al. Carbon Dioxide in Montmorillonite Clay Hydrates: Thermodynamics, Structure, and Transport from Molecular Simulation , 2010 .
[19] Koichi Nishikida,et al. Effective path length in attenuated total reflection spectroscopy. , 2008, Analytical chemistry.
[20] Robert C. Reynolds,et al. X-Ray Diffraction and the Identification and Analysis of Clay Minerals , 1989 .
[21] E. Ilton,et al. In situ infrared spectroscopic study of forsterite carbonation in wet supercritical CO2. , 2011, Environmental science & technology.
[22] Á. F. Cano,et al. Baseline studies of the clay minerals society source clays: Chemical analyses of major elements , 2001 .
[23] L. Vlček,et al. Supercritical fluid behavior at nanoscale interfaces: Implications for CO2 sequestration in geologic formations , 2010 .
[24] A. Busch,et al. Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bars: Implications for CO2 sequestration , 2012 .