Temperature Assessment Of Microwave-Enhanced Heating Processes

[1]  Carlos Segovia Fernández,et al.  A step ahead on efficient microwave heating for kaolinite , 2019, Applied Clay Science.

[2]  Tomoki Watanabe,et al.  The electromagnetic wave energy effect(s) in microwave–assisted organic syntheses (MAOS) , 2018, Scientific Reports.

[3]  Alberto Moure,et al.  Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System , 2018 .

[4]  A. Naito,et al.  Photoirradiation and Microwave Irradiation NMR Spectroscopy , 2018 .

[5]  A. Stankiewicz,et al.  Complexity and Challenges in Noncontact High Temperature Measurements in Microwave-Assisted Catalytic Reactors , 2017, Industrial & engineering chemistry research.

[6]  J. L. Hueso,et al.  In situ temperature measurements in microwave-heated gas-solid catalytic systems. Detection of hot spots and solid-fluid temperature gradients in the ethylene epoxidation reaction , 2017 .

[7]  S. Tsubaki,et al.  Smelting Magnesium Metal using a Microwave Pidgeon Method , 2017, Scientific Reports.

[8]  Jianyi Ma Master Equation Analysis of Thermal and Nonthermal Microwave Effects. , 2016, The journal of physical chemistry. A.

[9]  P. Plaza-González,et al.  In Situ Monitoring of Microwave Processing of Materials at High Temperatures through Dielectric Properties Measurement , 2016, Materials.

[10]  Jicheng Zhou,et al.  A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions , 2016, Scientific Reports.

[11]  Jing Sun,et al.  Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies , 2016, Materials.

[12]  B. Dong,et al.  Discussion on Microwave-Matter Interaction Mechanisms by In Situ Observation of “Core-Shell” Microstructure during Microwave Sintering , 2016, Materials.

[13]  Apurbba Kumar Sharma,et al.  Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing , 2016 .

[14]  Marina Schroder,et al.  Dielectric Materials And Applications , 2016 .

[15]  Jose M. Catala-Civera,et al.  Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity , 2015, IEEE Transactions on Microwave Theory and Techniques.

[16]  M. Jabłoński,et al.  Thermal behavior of natural dolomite , 2015, Journal of Thermal Analysis and Calorimetry.

[17]  L. Wondraczek,et al.  Strain-rate sensitivity of glasses , 2014 .

[18]  C. Kappe,et al.  How to measure reaction temperature in microwave-heated transformations. , 2013, Chemical Society reviews.

[19]  C. Kappe,et al.  Microwave effects in organic synthesis: myth or reality? , 2013, Angewandte Chemie.

[20]  S. Rao,et al.  Thermal and spectroscopy studies of Ag2SO4 and LiAgSO4 , 2013 .

[21]  Tom Van Gerven,et al.  On the effect of resonant microwave fields on temperature distribution in time and space , 2012 .

[22]  J. Catala-Civera,et al.  Noninvasive Monitoring of Polymer Curing Reactions by Dielectrometry , 2011, IEEE Sensors Journal.

[23]  Jason R. Schmink,et al.  Probing "microwave effects" using Raman spectroscopy. , 2009, Organic & biomolecular chemistry.

[24]  D. Ehrt,et al.  Electrical conductivity and viscosity of borosilicate glasses and melts , 2009 .

[25]  A. Grandjean,et al.  Correlation between electrical conductivity, viscosity, and structure in borosilicate glass-forming melts , 2007 .

[26]  M. Long,et al.  Dielectric analysis for in‐situ monitoring of gelatin renaturation and crosslinking , 2006 .

[27]  Martin Kuball,et al.  Phase selectivity of microwave heating evidenced by Raman spectroscopy , 2006 .

[28]  C. Gracia-Fernández,et al.  Use of the dielectric analysis to complement previous thermoanalytical studies on the system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane , 2004 .

[29]  David Adam,et al.  Microwave chemistry: Out of the kitchen , 2003, Nature.

[30]  Gennaro Cuccurullo,et al.  IR temperature measurements in microwave heating , 2002 .

[31]  David E. Clark,et al.  Processing materials with microwave energy , 2000 .

[32]  Tsu-Wei Chou,et al.  Microwave processing: fundamentals and applications , 1999 .

[33]  James S. Chickos,et al.  Reference Materials for Calorimetry and Differential Thermal Analysis , 1999 .

[34]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[35]  R. Secco,et al.  STRUCTURAL AND NONSTRUCTURAL FACTORS IN FAST ION CONDUCTION IN AG2SO4 AT HIGH PRESSURE , 1997 .

[36]  N. Setter,et al.  Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate. , 1997 .

[37]  N. Setter,et al.  Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth Titanate , 1996, Journal of the American Ceramic Society.

[38]  P. R. Graves,et al.  The Raman Modes of the Aurivillius Phases: Temperature and Polarization Dependence , 1995 .

[39]  P. K. Gallagher,et al.  Temperature calibration of a simultaneous TG/DTA apparatus , 1991 .

[40]  Sanford Bernman,et al.  Out of the Kitchen , 1985 .

[41]  W. Eysel,et al.  Differential Scanning Calorimetry: Simultaneous Temperature and Calorimetric Calibration , 1984 .

[42]  S. Iwai,et al.  Phase transition of potassium sulfate, K2SO4 (III); thermodynamical and phenomenological study , 1981 .

[43]  W. Gool PHASE TRANSITION BEHAVIOUR AS A GUIDE FOR SELECTING SOLID ELECTROLYTE MATERIALS , 1973 .

[44]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[45]  Y. Çengel Green thermodynamics , 2022 .