Biomechanics of the human intervertebral disc: A review of testing techniques and results.

Many experimental testing techniques have been adopted in order to provide an understanding of the biomechanics of the human intervertebral disc (IVD). The aim of this review article is to amalgamate results from these studies to provide readers with an overview of the studies conducted and their contribution to our current understanding of the biomechanics and function of the IVD. The overview is presented in a way that should prove useful to experimentalists and computational modellers. Mechanical properties of whole IVDs can be assessed conveniently by testing 'motion segments' comprising two vertebrae and the intervening IVD and ligaments. Neural arches should be removed if load-sharing between them and the disc is of no interest, and specimens containing more than two vertebrae are required to study 'adjacent level' effects. Mechanisms of injury (including endplate fracture and disc herniation) have been studied by applying complex loading at physiologically-relevant loading rates, whereas mechanical evaluations of surgical prostheses require slower application of standardised loading protocols. Results can be strongly influenced by the testing environment, preconditioning, loading rate, specimen age and degeneration, and spinal level. Component tissues of the disc (anulus fibrosus, nucleus pulposus, and cartilage endplates) have been studied to determine their material properties, but only the anulus has been thoroughly evaluated. Animal discs can be used as a model of human discs where uniform non-degenerate specimens are required, although differences in scale, age, and anatomy can lead to problems in interpretation.

[1]  J. Galante Tensile properties of the human lumbar annulus fibrosus. , 1967, Acta orthopaedica Scandinavica.

[2]  Dawn M Elliott,et al.  Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. , 2006, Journal of biomechanics.

[3]  E. Hsu,et al.  Diffusion tensor microscopy of the intervertebral disc anulus fibrosus , 1999, Magnetic resonance in medicine.

[4]  M. Adams,et al.  The Resistance to Flexion of the Lumbar Intervertebral Joint , 1980, Spine.

[5]  D. Elliott,et al.  Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression , 2005, Spine.

[6]  A. Nachemson,et al.  Lumbar intradiscal pressure. Experimental studies on post-mortem material. , 1960, Acta orthopaedica Scandinavica. Supplementum.

[7]  L. Claes,et al.  Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants , 1998, European Spine Journal.

[8]  Lutz Claes,et al.  Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. , 2007, Journal of biomechanics.

[9]  F. Marchand,et al.  Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus , 1990, Spine.

[10]  F. G. Evans,et al.  Strength of biological materials , 1970 .

[11]  Wafa Skalli,et al.  Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: An image-based modelling study on the bovine caudal disc. , 2015, Journal of biomechanics.

[12]  A. Nachemson,et al.  Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). , 1968, Journal of biomechanics.

[13]  D. Ogilvie-Harris,et al.  In Vivo Diurnal Variation in Intervertebral Disc Volume and Morphology , 1994, Spine.

[14]  Phillip Pollintine,et al.  Strength of the Cervical Spine in Compression and Bending , 2005, Spine.

[15]  M M Panjabi,et al.  Three‐dimensional load‐displacement curves due to froces on the cervical spine , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  D. Eyre,et al.  Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. , 1976, The Biochemical journal.

[17]  A. Amis,et al.  Testing and modelling of soft connective tissues of joints: A review , 2009 .

[18]  T. Keller,et al.  Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[19]  D. Mitton,et al.  Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system , 2003, European Spine Journal.

[20]  S. Klisch,et al.  A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. , 2000, Journal of biomechanical engineering.

[21]  L. Claes,et al.  New in vivo measurements of pressures in the intervertebral disc in daily life. , 1999, Spine.

[22]  S. McGill,et al.  Dynamic loading affects the mechanical properties and failure site of porcine spines. , 1997, Clinical biomechanics.

[23]  F. Hartmann,et al.  Biomechanical Properties of Human Intervertebral Discs Subjected to Axial Dynamic Compression: A Comparison of Lumbar and Thoracic Discs , 1984, Spine.

[24]  K. Markolf Deformation of the thoracolumbar intervertebral joints in response to external loads: a biomechanical study using autopsy material. , 1972, The Journal of bone and joint surgery. American volume.

[25]  M. Panzer,et al.  Cervical spine response in frontal crash. , 2011, Medical engineering & physics.

[26]  John J. Costi,et al.  Elastic Fibers Enhance the Mechanical Integrity of the Human Lumbar Anulus Fibrosus in the Radial Direction , 2008, Annals of Biomedical Engineering.

[27]  B Latimer,et al.  Vertebral Body and Posterior Element Morphology: The Normal Spine in Middle Life , 1988, Spine.

[28]  Alf Nachemson,et al.  In Vivo Measurements of Intradiscal Pressure , 1964 .

[29]  A Shirazi-Adl,et al.  Load-bearing role of facets in a lumbar segment under sagittal plane loadings. , 1987, Journal of biomechanics.

[30]  W. Skalli,et al.  Intervertebral Disc Prosthesis: Results and Prospects for the Year 2000 , 1997, Clinical orthopaedics and related research.

[31]  T. Oegema,et al.  Biochemistry of the intervertebral disc. , 1993, Clinics in sports medicine.

[32]  A. White Analysis of the mechanics of the thoracic spine in man. An experimental study of autopsy specimens. , 1969, Acta orthopaedica Scandinavica. Supplementum.

[33]  J. Lotz,et al.  Anisotropic shear behavior of the annulus fibrosus: effect of harvest site and tissue prestrain. , 2000, Medical engineering & physics.

[34]  R. Brand,et al.  Three-dimensional flexibility and stiffness properties of the human thoracic spine. , 1976, Journal of biomechanics.

[35]  J. Lotz,et al.  Frozen Storage Affects the Compressive Creep Behavior of the Porcine Intervertebral Disc , 1997, Spine.

[36]  J. Moran,et al.  A Morphometric Study of Human Lumbar and Selected Thoracic Vertebrae , 1987, Spine.

[37]  I. Stokes,et al.  Structural behavior of human lumbar spinal motion segments. , 2004, Journal of biomechanics.

[38]  Dawn M. Elliott,et al.  Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds , 2007, European Spine Journal.

[39]  K. Markolf,et al.  The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. , 1974, The Journal of bone and joint surgery. American volume.

[40]  Marco Cannella,et al.  A comparison of the human lumbar intervertebral disc mechanical response to normal and impact loading conditions. , 2013, Journal of biomechanical engineering.

[41]  A. Freemont,et al.  End-Plate Displacement During Compression of Lumbar Vertebra-Disc-Vertebra Segments and the Mechanism of Failure , 1993, Spine.

[42]  H. Wilke,et al.  Can Prevention of a Reherniation Be Investigated? Establishment of a Herniation Model and Experiments With an Anular Closure Device , 2013, Spine.

[43]  R. Bank,et al.  Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. , 1998, The Biochemical journal.

[44]  H. Wilke,et al.  Stepwise reduction of functional spinal structures increase disc bulge and surface strains. , 2008, Journal of biomechanics.

[45]  L. Haugh,et al.  Effect of Test Environment on Intervertebral Disc Hydration , 1997, Spine.

[46]  G. O’Connell,et al.  Effect of Hydration on Healthy Intervertebral Disk Mechanical Stiffness. , 2015, Journal of biomechanical engineering.

[47]  V C Mow,et al.  Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. , 1998, Journal of biomechanics.

[48]  M. Panjabi,et al.  Biomechanical time‐tolerance of fresh cadaveric human spine specimens , 1985, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[49]  Sounok Sen,et al.  Human Annulus Fibrosus Dynamic Tensile Modulus Increases with Degeneration. , 2012, Mechanics of materials : an international journal.

[50]  A NACHEMSON,et al.  THE INFLUENCE OF SPINAL MOVEMENTS ON THE LUMBAR INTRADISCAL PRESSURE AND ON THE TENSIL STRESSES IN THE ANNULUS FIBROSUS. , 1963, Acta orthopaedica Scandinavica.

[51]  D. Elliott,et al.  Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. , 2009, Journal of biomechanical engineering.

[52]  Zhi Shan,et al.  Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings , 2015, European Spine Journal.

[53]  M. Segal,et al.  Biaxial Testing of Human Annulus Fibrosus and Its Implications for a Constitutive Formulation , 2004, Annals of Biomedical Engineering.

[54]  A. Patwardhan,et al.  Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. , 1983, Spine.

[55]  A NACHEMSON,et al.  THE EFFECT OF FORWARD LEANING ON LUMBAR INTRADISCAL PRESSURE. , 1965, Acta orthopaedica Scandinavica.

[56]  E. Koeneman,et al.  An Apparatus for Applying Pure Nonconstraining Moments to Spine Segments In Vitro , 1995, Spine.

[57]  A. Schultz,et al.  Mechanical Properties of Human Lumbar Spine Motion Segments: Influences of Age, Sex, Disc Level, and Degeneration , 1979, Spine.

[58]  Jaro Karppinen,et al.  Prevalence and Pattern of Lumbar Magnetic Resonance Imaging Changes in a Population Study of One Thousand Forty-Three Individuals , 2009, Spine.

[59]  D S McNally,et al.  'Stress' distributions inside intervertebral discs. The effects of age and degeneration. , 1996, The Journal of bone and joint surgery. British volume.

[60]  Vijay K Goel,et al.  Artificial disc prosthesis: design concepts and criteria. , 2004, The spine journal : official journal of the North American Spine Society.

[61]  C. C. Francis,et al.  Dimensions of the cervical vertebrae , 1955, The Anatomical record.

[62]  M. Adams,et al.  Gradual Disc Prolapse , 1985, Spine.

[63]  V C Mow,et al.  Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[64]  A. Race,et al.  Effect of loading rate and hydration on the mechanical properties of the disc. , 2000, Spine.

[65]  V C Mow,et al.  The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. , 1997, Journal of biomechanics.

[66]  W. Hutton,et al.  Diurnal Variations in the Stresses on the Lumbar Spine , 1987, Spine.

[67]  Y. K. Liu,et al.  Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. , 1978, The Journal of bone and joint surgery. American volume.

[68]  M. Adams,et al.  What is Intervertebral Disc Degeneration, and What Causes It? , 2006, Spine.

[69]  Van C. Mow,et al.  Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc , 1996, Spine.

[70]  H. Hashizume Three-dimensional architecture and development of lumber intervertebral discs. , 1980, Acta Medica Okayama.

[71]  Zhi Shan,et al.  Biomechanical properties of lumbar endplates and their correlation with MRI findings of lumbar degeneration. , 2016, Journal of biomechanics.

[72]  C HIRSCH,et al.  New observations on the mechanical behavior of lumbar discs. , 1954, Acta orthopaedica Scandinavica.

[73]  B. Flannigan,et al.  Magnetic Resonance Imaging in the Diagnosis of Disc Degeneration: Correlation with Discography , 1987, Spine.

[74]  J. Lotz,et al.  Effect of Frozen Storage on the Creep Behavior of Human Intervertebral Discs , 2001, Spine.

[75]  V C Mow,et al.  Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus , 1996, Spine.

[76]  V. C. Mow,et al.  Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus , 1994, Spine.

[77]  R. Cailliet,et al.  Vertebral End-Plate Changes With Aging of Human Vertebrae , 1982, Spine.

[78]  Dawn M Elliott,et al.  Human Internal Disc Strains in Axial Compression Measured Noninvasively Using Magnetic Resonance Imaging , 2007, Spine.

[79]  James Melrose,et al.  Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc , 2008, European Spine Journal.

[80]  I. M. Lawless,et al.  The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments. , 2016, Journal of biomechanics.

[81]  F. Hartmann,et al.  Biomechanical properties of human intervertebral discs subjected to axial dynamic compression--influence of age and degeneration. , 1986, Journal of biomechanics.

[82]  Zhanfeng Cui,et al.  Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc , 2007, Journal of anatomy.

[83]  W. Horton Further observations on the elastic mechanism of the intervertebral disc. , 1958, The Journal of bone and joint surgery. British volume.

[84]  L. Setton,et al.  Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. , 2001, Journal of biomechanical engineering.

[85]  A Ratcliffe,et al.  Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. , 1994, Spine.

[86]  O. Perey,et al.  Fracture of the vertebral end-plate in the lumbar spine; an experimental biochemical investigation. , 1957, Acta orthopaedica Scandinavica. Supplementum.

[87]  D. Elliott,et al.  Human intervertebral disc internal strain in compression: The effect of disc region, loading position, and degeneration , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[88]  A. Simon,et al.  Viscoelastic shear modulus measurement of thin materials by interferometry at ultrasonic frequencies. , 2019, The Journal of the Acoustical Society of America.

[89]  M. Adams,et al.  Neural arch load-bearing in old and degenerated spines. , 2004, Journal of biomechanics.

[90]  I. M. Lawless,et al.  Effect of degeneration on the six degree of freedom mechanical properties of human lumbar spine segments , 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[91]  G Ray,et al.  Stiffness and strain energy criteria to evaluate the threshold of injury to an intervertebral joint. , 1989, Journal of biomechanics.

[92]  M. Adams,et al.  When Are Intervertebral Discs Stronger Than Their Adjacent Vertebrae? , 2007, Spine.

[93]  King H. Yang,et al.  Mechanism of facet load transmission as a hypothesis for low-back pain. , 1984, Spine.

[94]  J A Buckwalter,et al.  Aging and degeneration of the human intervertebral disc. , 1995, Spine.

[95]  B. Vernon‐roberts,et al.  Pathogenesis of Tears of the Anulus Investigated by Multiple‐Level Transaxial Analysis of the T12‐L1 Disc , 1997, Spine.

[96]  P. Huddleston Mechanical Function of Vertebral Body Osteophytes, as Revealed by Experiments on Cadaveric Spines , 2012 .

[97]  Adams Ma,et al.  The relevance of torsion to the mechanical derangement of the lumbar spine. , 1981 .

[98]  S. Ferguson,et al.  Biomechanics of the aging spine , 2003, European Spine Journal.

[99]  S. McGill,et al.  The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. , 2005, Clinical biomechanics.

[100]  D. Elliott,et al.  The Effect of Nucleotomy and the Dependence of Degeneration of Human Intervertebral Disc Strain in Axial Compression , 2011, Spine.

[101]  P. Dolan,et al.  Time-dependent changes in the lumbar spine's resistance to bending. , 1996, Clinical biomechanics.

[102]  V. Pedrini,et al.  Age-related variations in proteinpolysaccharides from human nucleus pulposus, annulus fibrosus, and costal cartilage. , 1969, The Journal of bone and joint surgery. American volume.

[103]  M M Panjabi,et al.  Human Lumbar Vertebrae: Quantitative Three-Dimensional Anatomy , 1992, Spine.

[104]  W J VIRGIN,et al.  Experimental investigations into the physical properties of the intervertebral disc. , 1951, The Journal of bone and joint surgery. British volume.

[105]  N. Broom,et al.  ISSLS Prize Winner: Microstructure and Mechanical Disruption of the Lumbar Disc Annulus: Part II: How the Annulus Fails Under Hydrostatic Pressure , 2008, Spine.

[106]  H. Wu,et al.  Mechanical behavior of the human annulus fibrosus. , 1976, Journal of biomechanics.

[107]  Bryan W Cunningham,et al.  Biomechanical Evaluation of Total Disc Replacement Arthroplasty: An In Vitro Human Cadaveric Model , 2003, Spine.

[108]  H. Inoue Three-Dimensional Architecture of Lumbar Intervertebral Discs , 1981, Spine.

[109]  M. Adams,et al.  The effect of fatigue on the lumbar intervertebral disc. , 1983, The Journal of bone and joint surgery. British volume.

[110]  P. Regitnig,et al.  Single lamellar mechanics of the human lumbar anulus fibrosus , 2005, Biomechanics and modeling in mechanobiology.

[111]  L. Kazarian,et al.  Creep characteristics of the human spinal column. , 1975, The Orthopedic clinics of North America.

[112]  F. Hartmann,et al.  Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. , 1984, Biorheology.

[113]  M. Adams,et al.  Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. , 2009, Bone.

[114]  T. Yamamuro,et al.  Elastin in the human intervertebral disk , 1986, Archives of orthopaedic and traumatic surgery.

[115]  M. Adams,et al.  Mechanical testing of the spine. An appraisal of methodology, results, and conclusions. , 1995, Spine.

[116]  C. Hamanishi,et al.  Schmorl's nodes on magnetic resonance imaging. Their incidence and clinical relevance. , 1994, Spine.

[117]  S. Kikuchi,et al.  In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. , 1999, Spine.

[118]  D. Eyre,et al.  Biochemical aspects of development and ageing of human lumbar intervertebral discs. , 1977, Rheumatology and rehabilitation.

[119]  M. Adams,et al.  The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry , 2007, European Spine Journal.

[120]  A. Shirazi-Adl,et al.  Dynamics of Human Lumbar Intervertebral Joints: Experimental and Finite‐Element Investigations , 1992, Spine.

[121]  A. Schultz,et al.  Load-displacement properties of lower cervical spine motion segments. , 1988, Journal of biomechanics.

[122]  A. Nachemson,et al.  IN VIVO MEASUREMENTS OF INTRADISCAL PRESSURE. DISCOMETRY, A METHOD FOR THE DETERMINATION OF PRESSURE IN THE LOWER LUMBAR DISCS. , 1964, The Journal of bone and joint surgery. American volume.

[123]  J Kraemer,et al.  Water and Electrolyte Content of Human Intervertebral Discs Under Variable Load , 1985, Spine.

[124]  J. Pooni,et al.  Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine , 2006, Surgical and Radiologic Anatomy.

[125]  N. Broom,et al.  On the Extent and Nature of Nucleus-Annulus Integration , 2012, Spine.

[126]  Van C. Mow,et al.  Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus , 1995, Spine.

[127]  P. Robertson,et al.  On how nucleus‐endplate integration is achieved at the fibrillar level in the ovine lumbar disc , 2012, Journal of anatomy.

[128]  R. Soames,et al.  Human intervertebral disc: Structure and function , 1988, The Anatomical record.

[129]  I Kaleps,et al.  Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part I. Human intervertebral joints. , 1984, Journal of biomechanics.

[130]  M. Adams,et al.  The Relevance of Torsion to the Mechanical Derangement of the Lumbar Spine , 1981, Spine.

[131]  J E Smeathers,et al.  Dynamic compressive properties of human lumbar intervertebral joints: a comparison between fresh and thawed specimens. , 1988, Journal of biomechanics.

[132]  M. Adams,et al.  Tensile properties of the annulus fibrosus , 1993, European Spine Journal.

[133]  J. Costi,et al.  The effect of hydration on the stiffness of intervertebral discs in an ovine model. , 2002, Clinical biomechanics.

[134]  M. Pearcy,et al.  The effect of repeated loading and freeze–thaw cycling on immature bovine thoracic motion segment stiffness , 2014, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[135]  Dawn M Elliott,et al.  Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. , 2011, Journal of the mechanical behavior of biomedical materials.

[136]  M. Adams,et al.  Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry , 1992, Spine.

[137]  T. Brown,et al.  Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. , 1957, The Journal of bone and joint surgery. American volume.

[138]  A. Patwardhan,et al.  A follower load increases the load-carrying capacity of the lumbar spine in compression. , 1999, Spine.

[139]  A. Schultz,et al.  Mechanical Properties of Human Lumbar Spine Motion Segments—Part I: Responses in Flexion, Extension, Lateral Bending, and Torsion , 1979 .

[140]  J. P. Thompson,et al.  Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc , 1990, Spine.

[141]  J. Tan,et al.  Cumulative Multiple Freeze-Thaw Cycles and Testing Does Not Affect Subsequent Within-Day Variation in Intervertebral Flexibility of Human Cadaveric Lumbosacral Spine , 2012, Spine.

[142]  Stefan M Duma,et al.  The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. , 2007, Biomedical sciences instrumentation.

[143]  Van C. Mow,et al.  Shear mechanical properties of human lumbar annulus fibrosus , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[144]  Sally Roberts,et al.  The Elastic Fiber Network of the Anulus Fibrosus of the Normal and Scoliotic Human Intervertebral Disc , 2005, Spine.

[145]  J. Lotz,et al.  Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[146]  S. Roberts,et al.  Transport Properties of the Human Cartilage Endplate in Relation to Its Composition and Calcification , 1996, Spine.

[147]  W C Hutton,et al.  The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. , 1980, The Journal of bone and joint surgery. British volume.

[148]  D. Eyre,et al.  Biochemistry of the intervertebral disc. , 1979, International review of connective tissue research.

[149]  A Shirazi-Adl,et al.  Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined with Compression , 1986, Spine.

[150]  A. Hofman,et al.  The Association Between Lumbar Disc Degeneration and Low Back Pain: The Influence of Age, Gender, and Individual Radiographic Features , 2010, Spine.

[151]  John J Costi,et al.  Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading: Solid Phase and Fluid Phase Contributions , 2008, Spine.

[152]  N. Broom,et al.  The influence of torsion on disc herniation when combined with flexion , 2010, European Spine Journal.

[153]  H. Gerner,et al.  Das elastomechanische Verhalten menschlicher Bandscheiben unter statischem Druck , 2004, Archiv für orthopädische und Unfall-Chirurgie, mit besonderer Berücksichtigung der Frakturenlehre und der orthopädisch-chirurgischen Technik.

[154]  A. Patwardhan,et al.  Load-Carrying Capacity of the Human Cervical Spine in Compression Is Increased Under a Follower Load , 2000, Spine.

[155]  A. Tencer,et al.  Biomechanical Properties of Threaded Inserts for Lumbar Interbody Spinal Fusion , 1995, Spine.

[156]  Thomas R. Oxland,et al.  Mapping the Structural Properties of the Lumbosacral Vertebral Endplates , 2001, Spine.

[157]  Ashvin Thambyah,et al.  How Healthy Discs Herniate: A Biomechanical and Microstructural Study Investigating the Combined Effects of Compression Rate and Flexion , 2014, Spine.

[158]  A. Thambyah,et al.  Micromechanics of annulus-end plate integration in the intervertebral disc. , 2012, The spine journal : official journal of the North American Spine Society.

[159]  B. Derby,et al.  Mechanical Properties of Aging Soft Tissues , 2015 .

[160]  Lumbar discometry. Lumbar intradiscal pressure measurements in vivo. , 1963, Lancet.

[161]  Sally Roberts,et al.  Does the thickness of the vertebral subchondral bone reflect the composition of the intervertebral disc? , 2005, European Spine Journal.

[162]  T. Keller,et al.  Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[163]  Jeffrey C Lotz,et al.  Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus , 2004, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[164]  Observations on Fiber-Forming Collagens in the Anulus Fibrosus , 2000, Spine.

[165]  P. Brinckmann,et al.  Deformation of the Vertebral End-plate Under Axial Loading of the Spine , 1983, Spine.

[166]  M. Pope,et al.  Water Content in Human Intervertebral Discs: Part II. Viscoelastic Behavior , 1987, Spine.

[167]  M. Adams,et al.  The Strength in Anterior Bending of Lumbar Intervertebral Discs , 1994, Spine.

[168]  A. M. Ahmed,et al.  Some static mechanical properties of the lumbar intervertebral joint, intact and injured. , 1982, Journal of biomechanical engineering.

[169]  A. Hiltner,et al.  Hierarchical structure of the intervertebral disc. , 1989, Connective tissue research.

[170]  B. Vernon‐roberts,et al.  Degenerative changes in the intervertebral discs of the lumbar spine and their sequelae. , 1977, Rheumatology and rehabilitation.

[171]  King H. Yang,et al.  Compressibility measurement of human intervertebral nucleus pulposus , 1988 .

[172]  A. Borthakur,et al.  Assessment of Human Disc Degeneration and Proteoglycan Content Using T1&rgr;-weighted Magnetic Resonance Imaging , 2006, Spine.

[173]  P Brinckmann,et al.  Fatigue fracture of human lumbar vertebrae. , 1987, Clinical biomechanics.

[174]  M. Adams,et al.  Significance of cartilage endplate within herniated disc tissue , 2014, European Spine Journal.

[175]  A B Schultz,et al.  Large compressive preloads decrease lumbar motion segment flexibility , 1991, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[176]  M M Panjabi,et al.  Cervical Human Vertebrae Quantitative Three‐Dimensional Anatomy of the Middle and Lower Regions , 1991, Spine.

[177]  T. Takeda,et al.  Three-dimensional observation of collagen framework of lumbar intervertebral discs. , 1975, Acta orthopaedica Scandinavica.

[178]  D. Bartelink The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs. , 1957, The Journal of bone and joint surgery. British volume.

[179]  A. Patwardhan,et al.  Flexion–Extension Response of the Thoracolumbar Spine Under Compressive Follower Preload , 2004, Spine.

[180]  F Cantraine,et al.  A Cadaveric Study Comparing Discography, Magnetic Resonance Imaging, Histology, and Mechanical Behavior of the Human Lumbar Disc , 1992, Spine.

[181]  King H. Yang,et al.  Mechanism of Disc Rupture: A Preliminary Report , 1991, Spine.

[183]  M. Panjabi,et al.  Articular Facets of the Human Spine Quantitative Three‐Dimensional Anatomy , 1993, Spine.

[184]  N. Broom,et al.  The structural basis of interlamellar cohesion in the intervertebral disc wall , 2006, Journal of anatomy.

[185]  C. Pfirrmann,et al.  Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration , 2001, Spine.

[186]  Albert B. Schultz,et al.  Mechanical Properties of Human Lumbar Spine Motion Segments—Part II: Responses in Compression and Shear; Influence of Gross Morphology , 1979 .

[187]  M. Adams,et al.  Discogenic Origins of Spinal Instability , 2005, Spine.

[188]  A. Nachemson,et al.  In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. , 1970, Acta orthopaedica Scandinavica.

[189]  K Kaneda,et al.  The Mechanical Properties of the Human L4–5 Functional Spinal Unit During Cyclic Loading: The Structural Effects of the Posterior Elements , 1992, Spine.

[190]  N. Bogduk Clinical Anatomy of the Lumbar Spine and Sacrum , 1997 .

[191]  M. Adams,et al.  Time-dependent changes in the lumbar spine's resistancc to bending , 1996 .

[192]  M. Pearcy,et al.  Axial Rotation of Lumbar Intervertebral Joints in Forward Flexion , 1991 .

[193]  A. Rohlmann,et al.  What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? , 2013, Journal of biomechanics.

[194]  Edward L. Compere,et al.  THE NORMAL AND PATHOLOGICAL PHYSIOLOGY OF THE NUCLEUS PULPOSUS OF THE INTERVERTEBRAL DISC , 1932 .

[195]  H. Farfan,et al.  The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. , 1970, The Journal of bone and joint surgery. American volume.

[196]  M. Adams,et al.  Intervertebral disc degeneration: evidence for two distinct phenotypes , 2012, Journal of anatomy.

[197]  Adams Ma,et al.  Prolapsed Intervertebral Disc: A Hyperflexion Injury , 1982 .

[198]  S. McGill,et al.  Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. , 2001, Clinical biomechanics.

[199]  M. Adams Intervertebral Disc Tissues , 2015 .

[200]  G Garbutt,et al.  Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. , 1996, Annals of the rheumatic diseases.

[201]  A. Thambyah,et al.  “Surprise” Loading in Flexion Increases the Risk of Disc Herniation Due to Annulus-Endplate Junction Failure: A Mechanical and Microstructural Investigation , 2015, Spine.

[202]  S. Rolander Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion. An experimental study on autopsy specimens. , 1966, Acta orthopaedica Scandinavica.

[203]  A. Naylor,et al.  Variations in the Protein Components of Human Intervertebral Disk with Age , 1967, Nature.

[204]  Paul Brinckmann,et al.  The influence of vertebral body fracture, intradiscal injection and partial discectomy on the radial bulge and height of human lumbar discs , 1985 .

[205]  S. Roberts,et al.  Biochemical and Structural Properties of the Cartilage End-Plate and its Relation to the Intervertebral Disc , 1989, Spine.

[206]  M. Aebi,et al.  The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. , 1996, The Journal of clinical investigation.

[207]  P. Pimienta,et al.  Mechanical Properties , 2018, Bainite in Steels.

[208]  William D. Lew,et al.  In Vitro, Biomechanical Comparison of an Anterior Lumbar Interbody Fusion with an Anteriorly Placed, Low-Profile Lumbar Plate and Posteriorly Placed Pedicle Screws or Translaminar Screws , 2005, Spine.

[209]  M. Adams,et al.  Intervertebral Disc Decompression Following Endplate Damage: Implications for Disc Degeneration Depend on Spinal Level and Age , 2013, Spine.

[210]  C HIRSCH The reaction of intervertebral discs to compression forces. , 1955, The Journal of bone and joint surgery. American volume.

[211]  Avinash G Patwardhan,et al.  Effect of compressive follower preload on the flexion–extension response of the human lumbar spine , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[212]  David L. Greene,et al.  The multidirectional bending properties of the human lumbar intervertebral disc. , 2006, The spine journal : official journal of the North American Spine Society.

[213]  S. McGill,et al.  Frozen storage increases the ultimate compressive load of porcine vertebrae , 1995, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[214]  J. Laible,et al.  Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. , 2007, Journal of biomechanics.

[215]  M. Adams,et al.  Can the Lumbar Spine Be Crushed in Heavy Lifting? , 1982, Spine.