High sediment input and possible oceanic anoxia in the pelagic Panthalassa during the latest Olenekian and early Anisian: Insights from a new deep-sea section in Ogama, Tochigi, Japan

[1]  L. Krystyn,et al.  A review of the evolution, biostratigraphy, provincialism and diversity of Middle and early Late Triassic conodonts , 2016 .

[2]  A. Matsuoka,et al.  Pre-Cretaceous accretionary complexes , 2016 .

[3]  D. Lehrmann,et al.  An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China , 2015 .

[4]  Ø. Hammer,et al.  Developing a strategy for accurate definition of a geological boundary through radio-isotopic and biochronological dating: The Early–Middle Triassic boundary (South China) , 2015 .

[5]  M. Ikeda,et al.  Cyclostratigraphic examination of Middle Triassic (Anisian) bedded chert in the Chichibu Belt from Tsukumi area, eastern Kyushu, Japan , 2015 .

[6]  Jing Chen,et al.  Recovery dynamics of foraminifers and algae following the Permian-Triassic extinction in Qingyan, South China , 2015 .

[7]  R. Tada,et al.  A 70 million year astronomical time scale for the deep-sea bedded chert sequence (Inuyama, Japan): Implications for Triassic–Jurassic geochronology , 2014 .

[8]  N. Tsuchiya,et al.  Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction , 2014 .

[9]  Haiou Qiu,et al.  Early Triassic seawater sulfate drawdown , 2014 .

[10]  S. Bowring,et al.  High-precision timeline for Earth’s most severe extinction , 2014, Proceedings of the National Academy of Sciences.

[11]  Haiou Qiu,et al.  Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism , 2013 .

[12]  R. Tada,et al.  High‐resolution lithostratigraphy and organic carbon isotope stratigraphy of the Lower Triassic pelagic sequence in central Japan , 2012 .

[13]  M. Benton,et al.  The timing and pattern of biotic recovery following the end-Permian mass extinction , 2012 .

[14]  M. Orchard,et al.  The elusive origin of Chiosella timorensis (Conodont Triassic) , 2012 .

[15]  D. Erwin,et al.  Calibrating the End-Permian Mass Extinction , 2011, Science.

[16]  H. Bucher,et al.  Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction , 2011 .

[17]  J. Chen,et al.  Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction , 2011 .

[18]  J. B. Maynard,et al.  Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean , 2011 .

[19]  D. Lehrmann,et al.  Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction , 2011, Paleobiology.

[20]  Tomoki Nakamura,et al.  Composition and accretion rate of fossil micrometeorites recovered in Middle Triassic deep-sea deposits , 2011 .

[21]  K. Kaiho,et al.  The Guadalupian–Lopingian boundary (Permian) in a pelagic sequence from Panthalassa recognized by integrated conodont and radiolarian biostratigraphy , 2011 .

[22]  P. Pearson,et al.  Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale , 2011 .

[23]  磯崎 行雄,et al.  日本列島の地体構造区分再訪 : 太平洋型(都城型)造山帯構成単元および境界の分類・定義 , 2010 .

[24]  R. Twitchett,et al.  Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences , 2010 .

[25]  R. Tada,et al.  Astronomical cycle origin of bedded chert: A middle Triassic bedded chert sequence, Inuyama, Japan , 2010 .

[26]  K. Kaiho,et al.  A smooth negative shift of organic carbon isotope ratios at an end-Permian mass extinction horizon in central pelagic Panthalassa , 2010 .

[27]  J. B. Maynard,et al.  Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian , 2010 .

[28]  S. Lucas,et al.  Triassic ammonoid biostratigraphy: an overview , 2010 .

[29]  M. Orchard Triassic conodonts and their role in stage boundary definition , 2010 .

[30]  A. Bercovici,et al.  Late Permian to Middle Triassic correlations and palaeogeographical reconstructions in south-western European basins: New sedimentological data from Minorca (Balearic Islands, Spain) , 2009 .

[31]  K. Kaiho,et al.  Panthalassic oceanic anoxia at the end of the Early Triassic: A cause of delay in the recovery of life after the end-Permian mass extinction , 2009 .

[32]  K. Kaiho,et al.  High organic carbon content and a decrease in radiolarians at the end of the Permian in a newly discovered continuous pelagic section: A coincidence? , 2009 .

[33]  Y. Kakuwa Evaluation of palaeo-oxygenation of the ocean bottom across the Permian–Triassic boundary , 2008 .

[34]  Laishi Zhao,et al.  Permian and Triassic radiolarians from northern Tibet: correlation between radiolarian and conodont biozones , 2007 .

[35]  R. Mundil,et al.  Geometry and chronology of growth and drowning of Middle Triassic carbonate platforms (Cernera and Bivera/Clapsavon) in the Southern Alps (northern Italy) , 2007 .

[36]  M. Orchard Conodont diversity and evolution through the latest Permian and Early Triassic upheavals , 2007 .

[37]  D. Lehrmann,et al.  Timing of recovery from the end-Permian extinction: Geochronologic and biostratigraphic constraints from south China , 2006 .

[38]  R. Tada,et al.  High-resolution Analysis of Late Paleozoic-Early Mesozoic Variability of Paleoceanographic System Recorded in Bedded Chert Sequence in the Inner zone of Southwest Japan , 2005 .

[39]  K. Kaiho,et al.  Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: A global review , 2005 .

[40]  I. Metcalfe,et al.  Ocean Plate Stratigraphy in East and Southeast Asia , 2005 .

[41]  J. Ogg A Geologic Time Scale 2004: The Triassic Period , 2005 .

[42]  A. Knoll,et al.  Large Perturbations of the Carbon Cycle During Recovery from the End-Permian Extinction , 2004, Science.

[43]  D. Uličný A drying-upward aeolian system of the Bohdašı́n Formation (Early Triassic), Sudetes of NE Czech Republic: record of seasonality and long-term palaeoclimate change , 2004 .

[44]  M. A. Zharkov,et al.  Climate during the Permian-Triassic Biosphere Reorganizations. Article 2. Climate of the Late Permian and Early Triassic: General Inferences , 2003 .

[45]  B. Beauchamp,et al.  Growth and demise of Permian biogenic chert along northwest Pangea: evidence for end-Permian collapse of thermohaline circulation , 2002 .

[46]  NoritoshiSuzuki,et al.  Late Olenekian Radiolarians from Bedded Chert of Ashio Terrane, Northeast Japan,and Faunal Turnovers in Western Panthalassa during Early Triassic , 2002 .

[47]  Feng Qinglai,et al.  Middle Triassic radiolarian fauna from southwest Yunnan, China , 2001 .

[48]  K. Kodama,et al.  Low-latitude and Southern Hemisphere origin of Anisian (Triassic) bedded chert in the Inuyama area, Mino terrane, central Japan , 2001 .

[49]  Hisashi Suzuki,et al.  Paleomagnetism of Triassic and Jurassic red bedded chert of the Inuyama area, central Japan , 2000 .

[50]  R. Tada,et al.  Confirmation of the Permian/Triassic boundary in deep-sea sedimentary rocks : earliest Triassic conodonts from black carbonaceous claystone of the Ubara section in the Tamba Belt, Southwest Japan , 1999 .

[51]  C. Looy,et al.  The delayed resurgence of equatorial forests after the permian-triassic ecologic crisis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Y. Kamata,et al.  Middle Triassic radiolarians from West Timor, Indonesia , 1999, Journal of Paleontology.

[53]  S. Yamakita,et al.  Reexamination of Upper Permian radiolarian biostratigraphy , 1998 .

[54]  Isozaki,et al.  Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea , 1997, Science.

[55]  Y. Kamata Reconstruction of chert-clastic sequence of the Ashio Terrane in the Kuzu area, central Japan. , 1997 .

[56]  Y. Kamata Tectonostratigraphy of the sedimentary complex in the southern part of the Ashio Terrane, central Japan , 1996 .

[57]  M. Orchard Taxonomy and correlation of Lower Triassic (Spathian) segminate conodonts from Oman and revision of some species of Neospathodus , 1995, Journal of Paleontology.

[58]  Douglas H. Erwin,et al.  The Permo–Triassic extinction , 1994, Nature.

[59]  K. Sugiyama Lower and middle Triassic radiolarians from MT. Kinkazan, Gifu prefecture, central Japan , 1992 .

[60]  Kiyoko Kuwahara,et al.  Late Permian "Toishi-type" siliceous mudstone in the Mino-Tamba Belt , 1991 .

[61]  Y. Isozaki,et al.  Well‐documented travel history of Mesozoic pelagic chert in Japan: From remote ocean to subduction zone , 1991 .

[62]  H. Bucher Lower anisian ammonoids from the northern Humboldt Range (northwestern Nevada, USA) and their bearing upon the Lower-Middle Triassic boundary , 1989 .

[63]  W. C. Sweet The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-Extinct Animal Phylum , 1988 .

[64]  S. Yamakita Stratigraphic relationship between Permian and Triassic strata of chert facies in the Chichibu terrane in eastern Shikoku. , 1987 .

[65]  B. Murchey,et al.  Geologic Significance of Paleozoic and Mesozoic Radiolarian Chert , 1986 .

[66]  N. Imoto Late Paleozoic and Mesozoic Cherts in the Tamba Belt, Southwest Japan (Part 2) , 1984 .

[67]  T. Koike,et al.  Chapter 5 Conodont Biostratigraphy of Cherts in the Japanese Islands , 1983 .

[68]  T. Koike Biostratigraphy of Triassic Conodonts in Japan , 1981 .

[69]  Kazuhiro Tanaka Kanoashi Group, an olistostrome, in the Nichihara area, Shimane Prefecture , 1980 .

[70]  Y. Yanagimoto Stratigraphy and geological structure of the Paleozoic and Mesozoic formations in the vicinity of Kuzuu, Tochigi Prefecture , 1973 .