A linear work, O(n1/6) time, parallel algorithm for solving planar Laplacians

We present a linear work parallel iterative algorithm for solving linear systems involving Laplacians of planar graphs. In particular, if <i>Ax</i> = <i>b</i>, where <i>A</i> is the Laplacian of any planar graph with <i>n</i> nodes, the algorithm produces a vector <i>x</i> such that ||<i>x</i>--<i>x</i>||<i>A</i> ≤ ε, in <i>O</i>(<i>n</i><sup>1/6+</sup><i>c</i>log(1/ε)) parallel time, doing <i>O</i>(<i>n</i>log(1/ε)) work, where <i>c</i> is any positive constant. One of the key ingredients of the solver, is an <i>O</i>(<i>nk</i>log<sup>2</sup><i>k</i>) work, <i>O</i>(<i>k</i>log<i>n</i>) time, parallel algorithm for decomposing any embedded planar graph into components of size <i>O</i>(<i>k</i>) that are delimited by <i>O</i>(<i>n</i>/√<i>k</i>) boundary edges. The result also applies to symmetric diagonally dominant matrices of planar structure.

[1]  Bruce Hendrickson,et al.  Solving Elliptic Finite Element Systems in Near-Linear Time with Support Preconditioners , 2004, SIAM J. Numer. Anal..

[2]  Victor Y. Pan,et al.  Fast and Efficient Parallel Solution of Sparse Linear Systems , 1993, SIAM J. Comput..

[3]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[4]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[5]  Vijaya Ramachandran,et al.  Planarity Testing in Parallel , 1994, J. Comput. Syst. Sci..

[6]  Gary L. Miller,et al.  Graph Partitioning by Spectral Rounding: Applications in Image Segmentation and Clustering , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  Gary L. Miller,et al.  Lower bounds for graph embeddings and combinatorial preconditioners , 2004, SPAA '04.

[8]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[9]  Philip N. Klein,et al.  An efficient parallel algorithm for planarity , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  Philip N. Klein On Gazit and Miller's parallel algorithm for planar separators: achieving greater efficiency through random sampling , 1993, SPAA '93.

[11]  J. Laurie Snell,et al.  Random Walks and Electrical Networks , 1984 .

[12]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[13]  D. Rose,et al.  Generalized nested dissection , 1977 .

[14]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[15]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[17]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[18]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[19]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[20]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[21]  Gary L. Miller,et al.  Finding small simple cycle separators for 2-connected planar graphs. , 1984, STOC '84.

[22]  Ojas Parekh,et al.  Finding effective support-tree preconditioners , 2005, SPAA '05.

[23]  François Fouss,et al.  A novel way of computing similarities between nodes of a graph, with application to collaborative recommendation , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[24]  Dexter Kozen The Planar Separator Theorem , 1992 .

[25]  Gary L. Miller,et al.  List ranking and parallel tree contraction , 1993 .

[26]  Shang-Hua Teng,et al.  Min-max-boundary domain decomposition , 1998, Theor. Comput. Sci..

[27]  Gary L. Miller,et al.  A parallel algorithm for finding a separator in planar graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).