The Diffuse Light Envelope of Luminous Red Galaxies

We use a stacking method to study the radial light profiles of luminous red galaxies (LRGs) at redshift ∼0.62 and ∼0.25, out to a radial range of 200 kpc. We do not find noticeable evolution of the profiles at the two redshifts. The LRG profiles appear to be well approximated by a single Sérsic profile, although some excess light can be seen outside 60 kpc. We quantify the excess light by measuring the integrated flux and find that the excess is about 10%—a non-dominant but still nonnegligible component.

[1]  D. Gerdes,et al.  Dark Energy Survey Year 1 Results: Detection of Intracluster Light at Redshift ∼ 0.25 , 2018, The Astrophysical Journal.

[2]  S. Borgani,et al.  BCG Mass Evolution in Cosmological Hydro-Simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  L. Hernquist,et al.  Stellar halos in Illustris: probing the histories of Milky Way-mass galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  N. E. Sommer,et al.  Dark Energy Survey year 1 results: Galaxy clustering for combined probes , 2017, Physical Review D.

[5]  B. Yanny,et al.  Instrumental Response Model and Detrending for the Dark Energy Camera , 2017, 1706.09928.

[6]  R. Nichol,et al.  redMaGiC: selecting luminous red galaxies from the DES Science Verification data , 2015, 1507.05460.

[7]  M. Hilton,et al.  Coevolution of brightest cluster galaxies and intracluster light using CLASH , 2015, 1503.04321.

[8]  Christer Sandin,et al.  The influence of diffuse scattered light II. Observations of galaxy haloes and thick discs and hosts of blue compact galaxies , 2015, 1502.07244.

[9]  Timothy A. Davis,et al.  The ATLAS3D project - XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images , 2014, 1410.0981.

[10]  Christer Sandin,et al.  The influence of diffuse scattered light I. The PSF and its role in observations of the edge-on galaxy NGC 5907 , 2014, 1406.5508.

[11]  G. Kauffmann,et al.  Parametrizing the stellar haloes of galaxies , 2014, 1404.2123.

[12]  G. Kauffmann,et al.  Galactic accretion and the outer structure of galaxies in the CDM model , 2013, 1303.6283.

[13]  S. White,et al.  The growth in size and mass of cluster galaxies since z = 2 , 2013, 1301.5319.

[14]  I. Trujillo,et al.  Stellar haloes of disc galaxies at z ∼ 1 , 2012, 1207.7023.

[15]  E. Zackrisson,et al.  Unlocking the secrets of stellar haloes using combined star counts and surface photometry , 2011, 1112.1696.

[16]  M. Blanton,et al.  IMPROVED BACKGROUND SUBTRACTION FOR THE SLOAN DIGITAL SKY SURVEY IMAGES , 2011, 1105.1960.

[17]  Claudio Dalla Vecchia,et al.  Cosmological simulations of the formation of the stellar haloes around disc galaxies , 2011, 1102.2526.

[18]  R. D. Jong Point spread function tails and the measurements of diffuse stellar halo light around edge‐on disc galaxies , 2008, 0807.0229.

[19]  R. Ibata,et al.  The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action , 2007, 0704.1318.

[20]  S. White,et al.  Intergalactic stars in z∼ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data , 2005, astro-ph/0501194.

[21]  J. Brinkmann,et al.  Haloes around edge-on disc galaxies in the Sloan Digital Sky Survey , 2004 .

[22]  Apache Point Observatory,et al.  Halos around edge-on disk galaxies in the SDSS , 2003, astro-ph/0309623.

[23]  T. Boroson,et al.  A faint luminous halo that may trace the dark matter around spiral galaxy NGC5907 , 1994, Nature.

[24]  J. Schombert The structure of brightest cluster members. I: Surface photometry , 1986 .

[25]  J. Sérsic Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .