Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

Abstract An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East–West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

[1]  J. Fasullo,et al.  Australia's unique influence on global sea level in 2010–2011 , 2013 .

[2]  Xavier Collilieux,et al.  Accuracy of the International Terrestrial Reference Frame origin and Earth expansion , 2011 .

[3]  E. J. Christensen,et al.  Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system , 1994 .

[4]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[5]  J. Ray,et al.  Geocenter motion and its geodetic and geophysical implications , 2012 .

[6]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[7]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[8]  Steven M. Klosko,et al.  The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error , 1995 .

[9]  Bruce J. Haines,et al.  Sub-Centimeter Precision Orbit Determination with GPS for Ocean Altimetry , 2010 .

[10]  Pascal Willis,et al.  Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data , 2004 .

[11]  Nicolas Picot,et al.  Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data Quality Assessment and Mean Sea Level Studies , 2012 .

[12]  William E. Carter,et al.  Precise Geodetic Infrastructure: National Requirements for a Shared Resource , 2010 .

[13]  Jürgen Kusche,et al.  Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data , 2005 .

[14]  Michael B. Heflin,et al.  Seasonal and interannual global surface mass variations from multisatellite geodetic data , 2006 .

[15]  S. Melachroinos,et al.  The effect of geocenter motion on Jason-2 orbits and the mean sea level , 2013 .

[16]  Pascal Willis,et al.  Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2 , 2010 .

[17]  Xavier Collilieux,et al.  IGS08: the IGS realization of ITRF2008 , 2012, GPS Solutions.

[18]  R. Nerem,et al.  The Use of a Precise Reference Frame in Sea Level Change Studies , 2000 .

[19]  B. Tapley,et al.  Geographically correlated orbit error and its effect on satellite altimetry missions , 1985 .

[20]  John C. Ries,et al.  Low degree gravitational changes from GRACE: Validation and interpretation , 2004 .

[21]  F. LeMoine,et al.  A reassessment of global and regional mean sea level trends from TOPEX and Jason‐1 altimetry based on revised reference frame and orbits , 2007 .

[22]  C. Wagner,et al.  Spherical harmonic representation of the gravity field from dynamic satellite data , 1982 .

[23]  A. Cazenave,et al.  Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period , 2014, Journal of Geodesy.

[24]  P. Féménias,et al.  Envisat Ocean Altimeter Becoming Relevant for Mean Sea Level Trend Studies , 2012 .

[25]  J. Ries,et al.  Precision Orbit Determination Standards for the Jason Series of Altimeter Missions , 2010 .

[26]  Carl Wunsch,et al.  Spatial Mapping of Time-Variable Errors in Jason-1 and TOPEX/Poseidon Sea Surface Height Measurements , 2007 .

[27]  Gerhard Beutler,et al.  Integrated scientific and societal user requirements and functional specifications for the GGOS , 2009 .

[28]  R. Steven Nerem,et al.  The 2011 La Niña: So strong, the oceans fell , 2012 .

[29]  A. Cazenave,et al.  Sea Level Rise - Regional and Global Trends , 2010 .

[30]  M. Cheng Geocenter Variations from Analysis of Topex/Poseidon SLR Data , 1999 .

[31]  John C. Ries,et al.  Jason-1 Precision Orbit Determination by Combining SLR and DORIS with GPS Tracking Data , 2004 .

[32]  Bruce J. Haines,et al.  The challenges in long-term altimetry calibration for addressing the problem of global sea level change , 2013 .

[33]  F. LeMoine,et al.  The 1-Centimeter Orbit: Jason-1 Precision Orbit Determination Using GPS, SLR, DORIS, and Altimeter Data Special Issue: Jason-1 Calibration/Validation , 2003 .

[34]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[35]  J. Lemoine,et al.  DORIS-based point mascons for the long term stability of precise orbit solutions , 2013 .

[36]  Matthew Rodell,et al.  Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates , 2005 .

[37]  Y. Bar-Sever,et al.  One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies , 2004 .

[38]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[39]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[40]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[41]  Thomas P. Yunck,et al.  Reduced-dynamic technique for precise orbit determination of low earth satellites , 1991 .

[42]  A. Cazenave,et al.  A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008 , 2009 .

[43]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[44]  Sergei Rudenko,et al.  Influence of time variable geopotential models on precise orbits of altimetry satellites, global and regional mean sea level trends , 2014 .

[45]  B. Tapley,et al.  Radial, transverse and normal satellite position perturbations due to the geopotential , 1987 .

[46]  Pascal Willis,et al.  Parameter sensitivity of TOPIX orbit and derived mean sea level to DORIS stations coordinates , 2002 .

[47]  Michael B. Heflin,et al.  DPOD2008: A DORIS-Oriented Terrestrial Reference Frame for Precise Orbit Determination , 2015 .