Data-driven modelling approaches for socio-hydrology: opportunities and challenges within the Panta Rhei Science Plan

ABSTRACT “Panta Rhei – Everything Flows” is the science plan for the International Association of Hydrological Sciences scientific decade 2013–2023. It is founded on the need for improved understanding of the mutual, two-way interactions occurring at the interface of hydrology and society, and their role in influencing future hydrologic system change. It calls for strategic research effort focused on the delivery of coupled, socio-hydrologic models. In this paper we explore and synthesize opportunities and challenges that socio-hydrology presents for data-driven modelling. We highlight the potential for a new era of collaboration between data-driven and more physically-based modellers that should improve our ability to model and manage socio-hydrologic systems. Crucially, we approach data-driven, conceptual and physical modelling paradigms as being complementary rather than competing, positioning them along a continuum of modelling approaches that reflects the relative extent to which hypotheses and/or data are available to inform the model development process. EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned

[1]  Martin F. Lambert,et al.  A strategy for diagnosing and interpreting hydrological model nonstationarity , 2014 .

[2]  Wenyan Wu,et al.  Optimal Control of Total Chlorine and Free Ammonia Levels in a Water Transmission Pipeline Using Artificial Neural Networks and Genetic Algorithms , 2015 .

[3]  G. Kuczera Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty , 1983 .

[4]  N. Lauzon,et al.  Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions , 2004 .

[5]  Pao-Shan Yu,et al.  Real-time probabilistic forecasting of flood stages , 2007 .

[6]  Andrea Castelletti,et al.  An evaluation framework for input variable selection algorithms for environmental data-driven models , 2014, Environ. Model. Softw..

[7]  Ashu Jain,et al.  Dissection of trained neural network hydrologic models for knowledge extraction , 2009 .

[8]  Christopher S Lowry,et al.  CrowdHydrology: Crowdsourcing Hydrologic Data and Engaging Citizen Scientists , 2013, Ground water.

[9]  Miao Wang,et al.  An agent-based model for risk-based flood incident management , 2011 .

[10]  Asaad Y. Shamseldin,et al.  A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall—runoff models , 2007 .

[11]  M. Hipsey,et al.  “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022 , 2013 .

[12]  Amin Elshorbagy,et al.  Cluster-Based Hydrologic Prediction Using Genetic Algorithm-Trained Neural Networks , 2007 .

[13]  R. K. Price,et al.  Combining semi-distributed process-based and data-driven models in flow simulation: A case study of the Meuse river basin , 2009 .

[14]  Dimitri Solomatine,et al.  A novel method to estimate model uncertainty using machine learning techniques , 2009 .

[15]  Dmitri Kavetski,et al.  Pursuing the method of multiple working hypotheses for hydrological modeling , 2011 .

[16]  Maarten B. Eppinga,et al.  Exploratory modeling: Extracting causality from complexity , 2014 .

[17]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system , 1986 .

[18]  Martin F. Lambert,et al.  Bayesian training of artificial neural networks used for water resources modeling , 2005 .

[19]  Dimitri Solomatine,et al.  Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application , 2009 .

[20]  Martin F. Lambert,et al.  A probabilistic method for assisting knowledge extraction from artificial neural networks used for hydrological prediction , 2006, Math. Comput. Model..

[21]  Danuše Hodáňová,et al.  Systems Analysis and Simulation in Ecology , 1976, Biologia Plantarum.

[22]  Hoshin Vijai Gupta,et al.  How Bayesian data assimilation can be used to estimate the mathematical structure of a model , 2010 .

[23]  Stephen J. Burges,et al.  A framework for classifying and comparing distributed hillslope and catchment hydrologic models , 2007 .

[24]  Julian D. Olden,et al.  Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks , 2002 .

[25]  Holger R. Maier,et al.  Neural networks for the prediction and forecasting of water resource variables: a review of modelling issues and applications , 2000, Environ. Model. Softw..

[26]  Matteo Detto,et al.  Causality and Persistence in Ecological Systems: A Nonparametric Spectral Granger Causality Approach , 2012, The American Naturalist.

[27]  Bellie Sivakumar,et al.  Socio‐hydrology: not a new science, but a recycled and re‐worded hydrosociology , 2012 .

[28]  Ashu Jain,et al.  Visualisation of Hidden Neuron Behaviour in a Neural Network Rainfall-Runoff Model , 2009 .

[29]  A. Ramachandra Rao,et al.  Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering , 2008 .

[30]  Amin Elshorbagy,et al.  Estimating Saturated Hydraulic Conductivity In Spatially Variable Fields Using Neural Network Ensembles , 2006 .

[31]  K. P. Sudheer,et al.  Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions , 2010, Environ. Model. Softw..

[32]  Amin Elshorbagy,et al.  Hybrid modelling approach to prairie hydrology: fusing data-driven and process-based hydrological models , 2012 .

[33]  Chandranath Chatterjee,et al.  Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs) , 2010 .

[34]  Holger R. Maier,et al.  Determining Inputs for Neural Network Models of Multivariate Time Series , 1997 .

[35]  H. Maier,et al.  The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters , 1996 .

[36]  Andrea Castelletti,et al.  Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling , 2013 .

[37]  Martin F. Lambert,et al.  Calibration and validation of neural networks to ensure physically plausible hydrological modeling , 2005 .

[38]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modelling system , 1986 .

[39]  Ozgur Kisi,et al.  Evapotranspiration modelling using support vector machines / Modélisation de l'évapotranspiration à l'aide de ‘support vector machines’ , 2009 .

[40]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[41]  Holger R. Maier,et al.  Bayesian model selection applied to artificial neural networks used for water resources modeling , 2008 .

[42]  E. Walshaw,et al.  A systematic approach , 2018, BDJ.

[43]  Elena Toth,et al.  Catchment classification based on characterisation of streamflow and precipitation time series , 2012 .

[44]  G. Blöschl,et al.  Socio‐hydrology: A new science of people and water , 2012 .

[45]  Robert J. Abrahart,et al.  DAMP: A protocol for contextualising goodness-of-fit statistics in sediment-discharge data-driven modelling , 2011 .

[46]  R. Govindaraju,et al.  Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds , 2003 .

[47]  Robert J. Abrahart,et al.  Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework , 2013 .

[48]  Robert J. Abrahart,et al.  Neural Network Hydroinformatics: Maintaining Scientific Rigour , 2009 .

[49]  Keith Beven,et al.  So how much of your error is epistemic? Lessons from Japan and Italy , 2013 .

[50]  Dagmar Haase,et al.  Participatory modelling of vulnerability and adaptive capacity in flood risk management , 2013, Natural Hazards.

[51]  Dimitri Solomatine,et al.  Cloud and cluster computing in uncertainty analysis of integrated flood models , 2013 .

[52]  Asaad Y. Shamseldin,et al.  Using gene expression programming to develop a combined runoff estimate model from conventional rainfall-runoff model outputs , 2009 .

[53]  Joseph H. A. Guillaume,et al.  Integrated assessment and modelling: Overview and synthesis of salient dimensions , 2015, Environ. Model. Softw..

[54]  Holger R. Maier,et al.  Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia , 1998 .

[55]  Hoshin Vijai Gupta,et al.  Systematic Bias in Land Surface Models , 2007 .

[56]  Upmanu Lall Debates—The future of hydrological sciences: A (common) path forward? One water. One world. Many climes. Many souls , 2014 .

[57]  S. Sorooshian,et al.  Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information , 2014 .

[58]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[59]  Martine Collard,et al.  SM2D: A Modular Knowledge Discovery Approach Applied to Hydrological Forecasting , 2013, Discovery Science.

[60]  Holger R. Maier,et al.  Data splitting for artificial neural networks using SOM-based stratified sampling , 2010, Neural Networks.

[61]  Amin Elshorbagy,et al.  Toward improving the reliability of hydrologic prediction: Model structure uncertainty and its quantification using ensemble‐based genetic programming framework , 2008 .

[62]  D. Edwards Data Mining: Concepts, Models, Methods, and Algorithms , 2003 .

[63]  Asaad Y. Shamseldin,et al.  Comparison of different forms of the Multi-layer Feed-Forward Neural Network method used for river flow forecasting , 2002 .

[64]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[65]  Praveen Kumar,et al.  Ecohydrologic process networks: 1. Identification , 2009 .

[66]  S. P. Neuman,et al.  Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .

[67]  V. Singh,et al.  Mathematical models of large watershed hydrology , 2002 .

[68]  Holger R. Maier,et al.  Optimal operation of complex water distribution systems using metamodels. , 2010 .

[69]  K. P. Sudheer,et al.  Knowledge Extraction from Trained Neural Network River Flow Models , 2005 .

[70]  Aaron C. Zecchin,et al.  Selection of smoothing parameter estimators for general regression neural networks - Applications to hydrological and water resources modelling , 2014, Environ. Model. Softw..

[71]  Holger R. Maier,et al.  Water Distribution System Optimization Using Metamodels , 2005 .

[72]  Hoshin Vijai Gupta,et al.  Debates—the future of hydrological sciences: A (common) path forward? Using models and data to learn: A systems theoretic perspective on the future of hydrological science , 2014 .

[73]  P. Coulibaly,et al.  Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting , 2012 .

[74]  R. Horton The Rôle of infiltration in the hydrologic cycle , 1933 .

[75]  K. P. Sudheer,et al.  Artificial Neural Network Modeling for Groundwater Level Forecasting in a River Island of Eastern India , 2010 .

[76]  Holger R. Maier,et al.  Optimal division of data for neural network models in water resources applications , 2002 .

[77]  Holger R. Maier,et al.  Input determination for neural network models in water resources applications. Part 1—background and methodology , 2005 .

[78]  Christian Hergarten,et al.  Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development , 2014, Front. Earth Sci..

[79]  M Azmi,et al.  MULTI MODEL DATA FUSION FOR HYDROLOGICAL FORECASTING USING K-NEAREST NEIGHBOUR METHOD , 2010 .

[80]  Michael Power,et al.  The predictive validation of ecological and environmental models , 1993 .

[81]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[82]  Ralf Merz,et al.  Catchment classification by runoff behaviour with self-organizing maps (SOM) , 2011, Hydrology and Earth System Sciences.

[83]  Peter E. Thornton,et al.  Big data visual analytics for exploratory earth system simulation analysis , 2013, Comput. Geosci..

[84]  Patricia Gober,et al.  Debates—Perspectives on socio‐hydrology: Modeling flood risk as a public policy problem , 2015 .

[85]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[86]  Hoshin Vijai Gupta,et al.  The quantity and quality of information in hydrologic models , 2015 .

[87]  Holger R. Maier,et al.  Non-linear variable selection for artificial neural networks using partial mutual information , 2008, Environ. Model. Softw..

[88]  Peter Reichert,et al.  Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time‐dependent parameters , 2009 .

[89]  Wenyan Wu,et al.  A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks , 2013 .

[90]  Dimitri Solomatine,et al.  Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology , 2009 .

[91]  G. Blöschl,et al.  Debates—Perspectives on socio‐hydrology: Capturing feedbacks between physical and social processes , 2015 .

[92]  J. N. Callow,et al.  Studying reach-scale spatial hydrology in ungauged catchments , 2013 .

[93]  Holger R. Maier,et al.  Data transformation for neural network models in water resources applications , 2003 .

[94]  Vahid Nourani,et al.  Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes , 2012, Adv. Eng. Softw..

[95]  Robert J. Abrahart,et al.  Multi-model data fusion for hydrological forecasting , 2001 .

[96]  Dimitri Solomatine,et al.  A novel approach to parameter uncertainty analysis of hydrological models using neural networks , 2009 .

[97]  Alberto Montanari,et al.  What do we mean by ‘uncertainty’? The need for a consistent wording about uncertainty assessment in hydrology , 2007 .

[98]  Alfred O. Hero,et al.  Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach , 2013 .

[99]  Dmitri Kavetski,et al.  Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development , 2011 .

[100]  K. P. Sudheer,et al.  Identification of physical processes inherent in artificial neural network rainfall runoff models , 2004 .

[101]  Dimitri Solomatine,et al.  Alternative configurations of quantile regression for estimating predictive uncertainty in water level forecasts for the upper Severn River: A comparison , 2014 .

[102]  J. Lamond,et al.  The role of flood memory in the impact of repeat flooding on mental health , 2014 .

[103]  Murugesu Sivapalan,et al.  Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health : Murrumbidgee River Basin, Australia , 2014 .

[104]  J. Vaze,et al.  Comparison of multi-model and multi-donor ensembles for regionalisation of runoff generation using five lumped rainfall-runoff models , 2009 .

[105]  Rao S. Govindaraju,et al.  Prediction of watershed runoff using Bayesian concepts and modular neural networks , 2000 .

[106]  Marcello Restelli,et al.  Tree‐based reinforcement learning for optimal water reservoir operation , 2010 .

[107]  Dimitri P. Solomatine,et al.  Data-Driven Modelling: Concepts, Approaches and Experiences , 2009 .

[108]  Günter Blöschl,et al.  Potential of time‐lapse photography of snow for hydrological purposes at the small catchment scale , 2012 .

[109]  E. Toth Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting , 2009 .

[110]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[111]  Avi Ostfeld,et al.  Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions , 2014, Environ. Model. Softw..

[112]  Holger R. Maier,et al.  Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems , 2008, Environ. Model. Softw..

[113]  Murugesu Sivapalan,et al.  A prototype framework for models of socio-hydrology: identification of key feedback loops and parameterisation approach , 2014 .

[114]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[115]  Roland K. Price,et al.  Encapsulation of parametric uncertainty statistics by various predictive machine learning models: MLUE method , 2014 .

[116]  V. Singh,et al.  Mathematical models of small watershed hydrology and applications. , 2002 .

[117]  F. Anctil,et al.  Can a multi-model approach improve hydrological ensemble forecasting? A study on 29 French catchments using 16 hydrological model structures , 2011 .

[118]  Attilio Castellarin,et al.  Data-driven catchment classification: application to the pub problem , 2011 .

[119]  Asaad Y. Shamseldin,et al.  A consensus real-time river flow forecasting model for the Blue Nile River , 2003 .

[120]  François Giraud,et al.  Socio-hydrosystem modelling for integrated water-resources management - the Hérault catchment case study, southern France , 2004, Environ. Model. Softw..

[121]  M. B. Beck,et al.  On the identification of model structure in hydrological and environmental systems , 2007 .

[122]  R. Abrahart,et al.  Use of Gene Expression Programming for Multimodel Combination of Rainfall-Runoff Models , 2012 .

[123]  Gabriele Freni,et al.  Validation of hydrological models: conceptual basis, methodological approaches and a proposal for a code of practice , 2010 .

[124]  Peter C. Young,et al.  A unified approach to environmental systems modeling , 2009 .

[125]  Indrajeet Chaubey,et al.  A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models , 2007 .

[126]  George Kuczera,et al.  Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis , 2009 .

[127]  A. W. Minns,et al.  The application of data mining techniques for the regionalisation of hydrological variables , 2002 .

[128]  E. Todini Hydrological catchment modelling: past, present and future , 2007 .

[129]  J. Reese Voshell,et al.  Volunteer Biological Monitoring: Can It Accurately Assess the Ecological Condition of Streams? , 2002 .

[130]  Katya Rodríguez-Vázquez,et al.  Rainfall–runoff modelling using genetic programming , 2012 .

[131]  Faming Liang,et al.  Estimating uncertainty of streamflow simulation using Bayesian neural networks , 2009 .

[132]  Asaad Y. Shamseldin,et al.  Neuroemulation: definition and key benefits for water resources research , 2012 .

[133]  Günter Blöschl,et al.  Socio-hydrology: conceptualising human-flood interactions , 2013 .

[134]  Dimitri P. Solomatine,et al.  Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting , 2007, Neural Networks.

[135]  Francesca Pianosi,et al.  Dynamic modeling of predictive uncertainty by regression on absolute errors , 2012 .

[136]  M Falkenmark,et al.  Main problems of water use and transfer of technology , 1979 .

[137]  Y. Hung,et al.  Use of artificial neural networks , 1995 .

[138]  Armando Brath,et al.  Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling , 2007 .

[139]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[140]  Ashok N. Srivastava,et al.  Data Mining: Concepts, Models, Methods, and Algorithms , 2005, J. Comput. Inf. Sci. Eng..

[141]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[142]  H. Gupta,et al.  Correcting the mathematical structure of a hydrological model via Bayesian data assimilation , 2011 .

[143]  Zoran Kapelan,et al.  Reducing the Complexity of Multiobjective Water Distribution System Optimization through Global Sensitivity Analysis , 2012 .

[144]  N. Crawford,et al.  DIGITAL SIMULATION IN HYDROLOGY' STANFORD WATERSHED MODEL 4 , 1966 .

[145]  G. A. Corzo Perez Hybrid models for Hydrological Forecasting: integration of data-driven and conceptual modelling techniques , 2009 .

[146]  Tom P. Evans,et al.  Debates—Perspectives on socio‐hydrology: Socio‐hydrologic modeling: Tradeoffs, hypothesis testing, and validation , 2015 .

[147]  N. J. de Vos,et al.  Echo state networks as an alternative to traditional artificial neural networks in rainfall–runoff modelling , 2013 .

[148]  Patricia Gober,et al.  Socio-hydrology and the science–policy interface: a case study of the Saskatchewan River basin , 2013 .

[149]  Chao Zhang,et al.  Calibration of Conceptual Rainfall-Runoff Models Using Global Optimization , 2015 .

[150]  Andrea Castelletti,et al.  A general framework for Dynamic Emulation Modelling in environmental problems , 2012, Environ. Model. Softw..

[151]  H. Gupta,et al.  Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation , 2009 .

[152]  I. Rodríguez‐Iturbe,et al.  Socio‐hydrology: Use‐inspired water sustainability science for the Anthropocene , 2014 .

[153]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[154]  Soichi Nishiyama,et al.  Neural Networks for Real Time Catchment Flow Modeling and Prediction , 2007 .

[155]  Teuvo Kohonen,et al.  In: Self-organising Maps , 1995 .

[156]  Katharina J. Srnka,et al.  From Words to Numbers: How to Transform Qualitative Data into Meaningful Quantitative Results , 2007 .

[157]  Mahmud Güngör,et al.  Hydrological time‐series modelling using an adaptive neuro‐fuzzy inference system , 2008 .

[158]  Hidde Leijnse,et al.  Country-wide rainfall maps from cellular communication networks , 2013, Proceedings of the National Academy of Sciences.

[159]  Aaron C. Zecchin,et al.  Improving partial mutual information-based input variable selection by consideration of boundary issues associated with bandwidth estimation , 2015, Environ. Model. Softw..

[160]  A. Montanari,et al.  Human‐impacted waters: New perspectives from global high‐resolution monitoring , 2015 .

[161]  C. Simmons,et al.  HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model , 2012 .

[162]  Daniel P. Loucks,et al.  Debates—Perspectives on socio‐hydrology: Simulating hydrologic‐human interactions , 2015 .

[163]  Edwin E. Herricks,et al.  A self-organizing radial basis network for estimating riverine fish diversity , 2013 .

[164]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[165]  Holger R. Maier,et al.  Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach , 2009 .

[166]  Holger R. Maier,et al.  Real‐time deployment of artificial neural network forecasting models: Understanding the range of applicability , 2012 .

[167]  Geert Jan Bex,et al.  Generalisation with neural networks , 1995 .

[168]  Ashish Sharma,et al.  Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 — A strategy for system predictor identification , 2000 .

[169]  Hal Caswell,et al.  12 – The Validation Problem , 1976 .

[170]  Paulo S. A. Freitas,et al.  Model combination in neural-based forecasting , 2006, Eur. J. Oper. Res..

[171]  Armando Brath,et al.  Neural networks and non-parametric methods for improving real-time flood forecasting through conceptual hydrological models , 2002 .

[172]  Holger R. Maier,et al.  Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling , 2014, Environ. Model. Softw..

[173]  K. P. Sudheer,et al.  Explaining the internal behaviour of artificial neural network river flow models , 2004 .

[174]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[175]  A. Castelletti,et al.  Tree‐based iterative input variable selection for hydrological modeling , 2013 .

[176]  S. Frenzel,et al.  Partial mutual information for coupling analysis of multivariate time series. , 2007, Physical review letters.

[177]  Robert J. Abrahart,et al.  The need for operational reasoning in data‐driven rating curve prediction of suspended sediment , 2012 .

[178]  S. Swenson,et al.  Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework , 2015, Water resources research.

[179]  Robert J. Abrahart,et al.  Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction , 2011 .

[180]  Robert J. Abrahart,et al.  Discussion of “River flow estimation from upstream flow records by artificial intelligence methods” by M.E. Turan, M.A. Yurdusev [J. Hydrol. 369 (2009) 71-77] , 2011 .

[181]  Remi Louis Barillec,et al.  Bayesian data assimilation , 2008 .

[182]  Matthew Rodell,et al.  Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region , 2013, Water resources research.

[183]  Dmitri Kavetski,et al.  Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights , 2011 .

[184]  Paulin Coulibaly,et al.  Bayesian neural network for rainfall‐runoff modeling , 2006 .

[185]  Faming Liang,et al.  Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting , 2011 .

[186]  Holger R. Maier,et al.  A systematic approach to determining metamodel scope for risk-based optimization and its application to water distribution system design , 2015, Environ. Model. Softw..

[187]  Li-Chiu Chang,et al.  Regional flood inundation nowcast using hybrid SOM and dynamic neural networks , 2014 .

[188]  Robert J. Abrahart,et al.  Sensitivity analysis for comparison, validation and physical legitimacy of neural network-based hydrological models , 2014 .

[189]  Keith Beven,et al.  On the colour and spin of epistemic error (and what we might do about it) , 2011 .