A continuation method for motion-planning problems

We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned singularities are the abnormal extremals associated to the dynamics of the control system and the Wazewski equation is an o.d.e. on the control space called the Path Lifting Equation (PLE). We first show elementary facts relative to the maximal solution of the PLE such as local existence and uniqueness. Then we prove two general results, a finite-dimensional reduction for the PLE on compact time intervals and a regularity preserving theorem. In a second part, if the Strong Bracket Generating Condition holds, we show, for several control spaces, the global existence of the solution of the PLE, extending a previous result of H.J. Sussmann.

[1]  J. Leray,et al.  Topologie et équations fonctionnelles , 1934 .

[2]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[3]  Lamberto Cesari,et al.  Functional analysis and Galerkin's method. , 1964 .

[4]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[5]  J. Hale Applications of alternative problems , 1971 .

[6]  Raymond A. DeCarlo,et al.  Continuation methods: Theory and applications , 1983 .

[7]  S. Richter,et al.  Continuation methods: Theory and applications , 1983 .

[8]  J. Bismut Large Deviations and the Malliavin Calculus , 1984 .

[9]  R. Strichartz Sub-Riemannian geometry , 1986 .

[10]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[11]  S. Sastry,et al.  Steering nonholonomic systems using sinusoids , 1990, 29th IEEE Conference on Decision and Control.

[12]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[13]  Gerardo Lafferriere,et al.  Motion planning for controllable systems without drift , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[14]  H. Sussmann New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .

[15]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[16]  R. Montgomery Abnormal Optimal Controls and Open Problems in Nonholonomic Steering , 1992 .

[17]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[18]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[19]  Z. Ge Horizontal path spaces and Carnot-Carathéodory metrics , 1993 .

[20]  P. Souéres,et al.  Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..

[21]  V. Jurdjevic Geometric control theory , 1996 .

[22]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[23]  Wensheng Liu,et al.  Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .

[24]  Wensheng Liu,et al.  An Approximation Algorithm for Nonholonomic Systems , 1997 .

[25]  John T. Wen,et al.  A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..

[26]  Tien Yien Li,et al.  Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.

[27]  Yacine Chitour Path planning on compact Lie groups using a homotopy method , 2002, Syst. Control. Lett..

[28]  A. Chelouah,et al.  On the motion planning of rolling surfaces , 2003 .