A continuation method for motion-planning problems
暂无分享,去创建一个
[1] J. Leray,et al. Topologie et équations fonctionnelles , 1934 .
[2] T. Ważewski,et al. Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .
[3] Lamberto Cesari,et al. Functional analysis and Galerkin's method. , 1964 .
[4] E B Lee,et al. Foundations of optimal control theory , 1967 .
[5] J. Hale. Applications of alternative problems , 1971 .
[6] Raymond A. DeCarlo,et al. Continuation methods: Theory and applications , 1983 .
[7] S. Richter,et al. Continuation methods: Theory and applications , 1983 .
[8] J. Bismut. Large Deviations and the Malliavin Calculus , 1984 .
[9] R. Strichartz. Sub-Riemannian geometry , 1986 .
[10] P. Pansu,et al. Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .
[11] S. Sastry,et al. Steering nonholonomic systems using sinusoids , 1990, 29th IEEE Conference on Decision and Control.
[12] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[13] Gerardo Lafferriere,et al. Motion planning for controllable systems without drift , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.
[14] H. Sussmann. New Differential Geometric Methods in Nonholonomic Path Finding , 1992 .
[15] Philippe Martin. Contribution a l'etude des systemes differentiellement plats , 1992 .
[16] R. Montgomery. Abnormal Optimal Controls and Open Problems in Nonholonomic Steering , 1992 .
[17] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[18] H. Sussmann,et al. A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[19] Z. Ge. Horizontal path spaces and Carnot-Carathéodory metrics , 1993 .
[20] P. Souéres,et al. Shortest paths synthesis for a car-like robot , 1996, IEEE Trans. Autom. Control..
[21] V. Jurdjevic. Geometric control theory , 1996 .
[22] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[23] Wensheng Liu,et al. Shortest paths for sub-Riemannian metrics on rank-two distributions , 1996 .
[24] Wensheng Liu,et al. An Approximation Algorithm for Nonholonomic Systems , 1997 .
[25] John T. Wen,et al. A path space approach to nonholonomic motion planning in the presence of obstacles , 1997, IEEE Trans. Robotics Autom..
[26] Tien Yien Li,et al. Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.
[27] Yacine Chitour. Path planning on compact Lie groups using a homotopy method , 2002, Syst. Control. Lett..
[28] A. Chelouah,et al. On the motion planning of rolling surfaces , 2003 .