Biomimetic ion substituted and Co-substituted hydroxyapatite nanoparticle synthesis using Serratia Marcescens

[1]  Inga Urlić,et al.  Multiphase zinc and magnesium mono-substituted calcium phosphates derived from cuttlefish bone: A multifunctional biomaterials , 2022, Ceramics International.

[2]  V. Muthuvijayan,et al.  Microbial biomineralization of hydroxyapatite nanocrystals using Bacillus tequilensis , 2022, Ceramics International.

[3]  R. Sinisterra,et al.  Magnesium (Mg2 +), Strontium (Sr2 +), and Zinc (Zn2 +) Co-substituted Bone Cements Based on Nano-hydroxyapatite/Monetite for Bone Regeneration , 2022, Biological Trace Element Research.

[4]  T. Chandra,et al.  Microbial Synthesis of Hydroxyapatite-Nanocellulose Nanocomposites from Symbiotic Culture of Bacteria and Yeast Pellicle of Fermented Kombucha Tea , 2022, Sustainability.

[5]  A. Grumezescu,et al.  Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering , 2022, Polymers.

[6]  X. Liu,et al.  Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis , 2021, Bioactive materials.

[7]  V. Muthuvijayan,et al.  Evaluating the inherent osteogenic and angiogenic potential of mesoporous silica nanoparticles to augment vascularized bone tissue formation , 2021 .

[8]  Ke Yang,et al.  Synthesis, characterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application , 2020 .

[9]  O. Horovitz,et al.  Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration , 2020, International journal of nanomedicine.

[10]  M. Doble,et al.  Curcumin Releasing Eggshell Derived Carbonated Apatite Nanocarriers for Combined Anti-Cancer, Anti-Inflammatory and Bone Regenerative Therapy. , 2019, Journal of nanoscience and nanotechnology.

[11]  I. Cacciotti Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances , 2019, International Journal of Applied Ceramic Technology.

[12]  M. Doble,et al.  Dual delivery of tuberculosis drugs via cyclodextrin conjugated curdlan nanoparticles to infected macrophages. , 2019, Carbohydrate polymers.

[13]  Aldo Fransiskus Marsetio,et al.  The potential of carbonate apatite as an alternative bone substitute material , 2019, Medical Journal of Indonesia.

[14]  S. Ramesh,et al.  Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramic , 2019, Ceramics International.

[15]  J. Bollinger,et al.  Toward an efficient antibacterial agent: Zn- and Mg-doped hydroxyapatite nanopowders , 2019, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[16]  Teddy Tite,et al.  Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and Their In Vitro Interrogation Methods , 2018, Materials.

[17]  B. Meenan,et al.  Synthesis and characterisation of nanophase hydroxyapatite co-substitutedwith strontium and zinc , 2018 .

[18]  M. Doble,et al.  Development of Egg Shell Derived Carbonated Apatite Nanocarrier System for Drug Delivery. , 2018, Journal of nanoscience and nanotechnology.

[19]  Abinaya Rajendran,et al.  Multi-element substituted hydroxyapatites: synthesis, structural characteristics and evaluation of their bioactivity, cell viability, and antibacterial activity , 2018, Journal of Sol-Gel Science and Technology.

[20]  B. Meenan,et al.  Strontium and zinc co-substituted nanophase hydroxyapatite , 2017 .

[21]  B. Meenan,et al.  The deposition of strontium and zinc Co-substituted hydroxyapatite coatings , 2017, Journal of Materials Science: Materials in Medicine.

[22]  Babak Mostaghaci,et al.  Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[23]  S. Best,et al.  Synthesis, characterization and modelling of zinc and silicate co-substituted hydroxyapatite , 2015, Journal of The Royal Society Interface.

[24]  B. Ludes,et al.  Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology , 2014 .

[25]  F. Severcan,et al.  Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite , 2014 .

[26]  L. Grover,et al.  Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. , 2014, Materials science & engineering. C, Materials for biological applications.

[27]  M. Doble,et al.  High glycolic poly (DL lactic co glycolic acid) nanoparticles for controlled release of meropenem. , 2013, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[28]  A. Prochiantz,et al.  Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies. , 2013, Chemistry.

[29]  Shengmin Zhang,et al.  Fine structure study on low concentration zinc substituted hydroxyapatite nanoparticles , 2012 .

[30]  T. Kumar,et al.  Strontium‐Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties , 2012 .

[31]  A. Bandyopadhyay,et al.  Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. , 2012, Acta biomaterialia.

[32]  Serena M Best,et al.  Substituted hydroxyapatites for bone repair , 2012, Journal of Materials Science: Materials in Medicine.

[33]  J. Granjeiro,et al.  Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. , 2011, Journal of biomedical materials research. Part A.

[34]  T. Webster,et al.  Nanosize hydroxyapatite: doping with various ions , 2011 .

[35]  Seeram Ramakrishna,et al.  Electrospun Polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration , 2011 .

[36]  A. Bandyopadhyay,et al.  Bone cell–material interactions on metal-ion doped polarized hydroxyapatite , 2011 .

[37]  F. J. Olorunniji,et al.  Cofactor interactions in the activation of tissue non-specific alkaline phosphatase: Synergistic effects of Zn 2+ and Mg 2+ ions , 2010 .

[38]  M. Gazzano,et al.  Ionic substitutions in calcium phosphates synthesized at low temperature. , 2010, Acta biomaterialia.

[39]  M. Lombardi,et al.  Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour , 2009 .

[40]  Y. Leng,et al.  Characterization and structural analysis of zinc-substituted hydroxyapatites. , 2009, Acta biomaterialia.

[41]  M. Gazzano,et al.  Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. , 2009, Journal of biomedical materials research. Part A.

[42]  G. H. Nancollas,et al.  Calcium orthophosphates: crystallization and dissolution. , 2008, Chemical reviews.

[43]  Katsuyuki Matsunaga,et al.  Theoretical trend of ion exchange ability with divalent cations in hydroxyapatite , 2008 .

[44]  Xiufeng Xiao,et al.  Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method , 2008, Journal of materials science. Materials in medicine.

[45]  F. Miyaji,et al.  Formation and structure of zinc-substituted calcium hydroxyapatite , 2005 .

[46]  K. Byrappa,et al.  Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method. , 2004, Biomaterials.

[47]  T. Webster,et al.  Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. , 2002, Journal of biomedical materials research.

[48]  T. Webster,et al.  Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. , 2002, Journal of biomedical materials research.

[49]  A. Boccaccini,et al.  Development and characterization of multi-element doped hydroxyapatite bioceramic coatings on metallic implants for orthopedic applications , 2017 .

[50]  Z. Berk Crystallization and Dissolution , 2009 .

[51]  D. Choi,et al.  Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization. , 2005, Acta biomaterialia.