Maintaining Human Health for Humans-Mars

[1]  Robert C. Singleterry,et al.  Radiation engineering analysis of shielding materials to assess their ability to protect astronauts in deep space from energetic particle radiation , 2013, Acta Astronautica.

[2]  Melanie L. Grande,et al.  The Impact of Mission Duration on a Mars Orbital Mission , 2017 .

[3]  Horst W. Loeb,et al.  A realistic concept of a manned Mars mission with nuclear–electric propulsion , 2015 .

[4]  Clarence Sams,et al.  Alterations in adaptive immunity persist during long-duration spaceflight , 2015, npj Microgravity.

[5]  F. Cucinotta,et al.  Safe days in space with acceptable uncertainty from space radiation exposure. , 2015, Life sciences in space research.

[6]  Leo Fabisinski,et al.  Case and Development Path for Fusion Propulsion , 2015 .

[7]  Stanley K. Borowski,et al.  Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts , 2014 .

[8]  Francis A. Cucinotta,et al.  Space Radiation Risks for Astronauts on Multiple International Space Station Missions , 2014, PloS one.

[9]  Stanley K. Borowski,et al.  Nuclear Thermal Propulsion (NTP): A proven growth technology for human NEO/Mars exploration missions , 2012, 2012 IEEE Aerospace Conference.

[10]  J. Rovey,et al.  Pre-Ionization Plasma in a FRC Test Article , 2012 .

[11]  Thomas W. Packard,et al.  Mars Earth Return Vehicle (MERV) Propulsion Options , 2010 .

[12]  Andrew V. Ilin,et al.  Fast Transits to Mars Using Electric Propulsion , 2010 .

[13]  Robert D. Braun,et al.  Trajectory Options for Human Mars Missions , 2006 .

[14]  Douglas Fiehler,et al.  A Comparison of Electric Propulsion Systems for Mars Exploration , 2003 .

[15]  M. Guelman,et al.  Propellant Utilization in Hall Thrusters , 1996 .