Period of the power generator and small values of Carmichael's function
暂无分享,去创建一个
[1] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[2] Igor E. Shparlinski,et al. On the distribution of the power generator , 2001, Math. Comput..
[3] Igor E. Shparlinski,et al. On the linear complexity profile of the power generator , 2000, IEEE Trans. Inf. Theory.
[4] Bruce Geist,et al. Analysis of Iterated Modular Exponentiation: The Orbits of xα mod N , 1998, Des. Codes Cryptogr..
[5] Douglas R. Stinson,et al. Cryptography: Theory and Practice , 1995 .
[6] Thomas W. Cusick. Properties of the x2 mod N pseudorandom number generator , 1995, IEEE Trans. Inf. Theory.
[7] P. Erdos,et al. Carmichael's lambda function , 1991 .
[8] Carl Pomerance,et al. On the distribution of amicable numbers. , 1977 .
[9] Carl Pomerance,et al. On the distribution of amicable numbers. II. , 1977 .
[10] Robert D. Silverman,et al. Are 'Strong' Primes Needed for RSA , 2001, IACR Cryptol. ePrint Arch..
[11] Johan Håstad,et al. The security of individual RSA bits , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[12] Ronald L. Rivest,et al. Time-lock Puzzles and Timed-release Crypto , 1996 .
[13] Claus-Peter Schnorr,et al. Stronger Security Proofs for RSA and Rabin Bits , 1997, Journal of Cryptology.
[14] Igor E. Shparlinski,et al. On the Linear Complexity of the Power Generator , 2001, Des. Codes Cryptogr..
[15] Antal Balog,et al. The Prime k-Tuplets Conjecture on Average , 1990 .
[16] Igor E. Shparlinski,et al. On the Distribution of the RSA Generator , 1998, SETA.
[17] Ronald L. Rivest,et al. Remarks on a Proposed Cryptanalytic Attack on the M.I.T. Public-Key Cryptosystem , 1978, Cryptologia.
[18] U. Maurer. Fast generation of prime numbers and secure public-key cryptographic parameters , 1995, Journal of Cryptology.
[19] C. Ding,et al. Stream Ciphers and Number Theory , 1998 .
[20] P. Erdös,et al. On a problem of Oppenheim concerning “factorisatio numerorum” , 1983 .
[21] Manuel Blum,et al. A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..
[22] A. Harles. Sieve Methods , 2001 .
[23] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[24] Glyn Harman,et al. Shifted primes without large prime factors , 1998 .
[25] G. Tenenbaum,et al. Integers without large prime factors , 1993 .