Advances in Bayesian Probabilistic Modeling for Industrial Applications

Industrial applications frequently pose a notorious challenge for state-of-the-art methods in the contexts of optimization, designing experiments and modeling unknown physical response. This proble...

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Agathe Girard,et al.  Propagation of uncertainty in Bayesian kernel models - application to multiple-step ahead forecasting , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[3]  Raphael T. Haftka,et al.  On Approaches to Combine Experimental Strength and Simulation with Application to Open-Hole-Tension Configuration , 2016 .

[4]  Christophe Pierre,et al.  HYBRID FREQUENCY-TIME DOMAIN METHODS FOR THE ANALYSIS OF COMPLEX STRUCTURAL SYSTEMS WITH DRY FRICTION DAMPING , 2003 .

[5]  Liping Wang,et al.  Calibrating Transient Models With Multiple Responses Using Bayesian Inverse Techniques , 2013 .

[6]  George Z. Gertner,et al.  Uncertainty and sensitivity analysis for models with correlated parameters , 2008, Reliab. Eng. Syst. Saf..

[7]  B. Babbitt,et al.  METHODS AND GUIDELINES FOR EFFECTIVE MODEL CALIBRATION , 2001 .

[8]  Kevin Ryan,et al.  A Gaussian Process Modeling Approach for Fast Robust Design With Uncertain Inputs , 2018 .

[9]  Andrew Gordon Wilson,et al.  Deep Kernel Learning , 2015, AISTATS.

[10]  James R. Gattiker,et al.  Gaussian Process-Based Sensitivity Analysis and Bayesian Model Calibration with GPMSA , 2017 .

[11]  Liping Wang,et al.  Expected-Improvement-Based Methods for Adaptive Sampling in Multi-Objective Optimization Problems , 2016, DAC 2016.

[12]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[13]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[14]  Waad Subber,et al.  Dual-primal domain decomposition method for uncertainty quantification , 2013 .

[15]  Alaa Elwany,et al.  Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models , 2016 .

[16]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[17]  Waad Subber,et al.  A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner , 2014, J. Comput. Phys..

[18]  Ankur Srivastava,et al.  Hybrid Bayesian Solution to NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge , 2015, J. Aerosp. Inf. Syst..

[19]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[20]  Ankur Srivastava,et al.  Analytical global sensitivity analysis with Gaussian processes , 2017, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[21]  Wei Chen,et al.  Crashworthiness-based lightweight design problem via new robust design method considering two sources of uncertainties , 2013 .

[22]  Herschel Rabitz,et al.  General formulation of HDMR component functions with independent and correlated variables , 2011, Journal of Mathematical Chemistry.

[23]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[24]  Bo Wang,et al.  Surrogate-Based Optimum Design for Stiffened Shells with Adaptive Sampling , 2012 .

[25]  Liping Wang,et al.  Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization , 2019, Design and Manufacturing.

[26]  Liping Wang,et al.  Challenges in Uncertainty, Calibration, Validation and Predictability of Engineering Analysis Models , 2011 .

[27]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[28]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[29]  Kevin Ryan,et al.  An intelligent sampling framework for multi-objective optimization in high dimensional design space , 2018 .

[30]  Omar Ghattas,et al.  From SIAM News , Volume 43 , Number 10 , December 2010 Computer Predictions with Quantified Uncertainty , Part II , 2010 .

[31]  Alexis Boukouvalas,et al.  GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..

[32]  Herschel Rabitz,et al.  Sixth International Conference on Sensitivity Analysis of Model Output Global Sensitivity Analysis for Systems with Independent and / or Correlated Inputs , 2013 .

[33]  Brian Williams,et al.  A Bayesian calibration approach to the thermal problem , 2008 .

[34]  Agathe Girard,et al.  Prediction at an Uncertain Input for Gaussian Processes and Relevance Vector Machines Application to Multiple-Step Ahead Time-Series Forecasting , 2002 .

[35]  Miguel Lázaro-Gredilla,et al.  Doubly Stochastic Variational Bayes for non-Conjugate Inference , 2014, ICML.

[36]  F. Gamboa,et al.  Generalized Sobol sensitivity indices for dependent variables: numerical methods , 2013, 1303.4372.

[37]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[38]  Sébastien Loisel,et al.  Schwarz preconditioners for stochastic elliptic PDEs , 2014 .

[39]  Liping Wang,et al.  Efficient Bayesian Inverse Method Using Robust Gaussian Processes For Design Under Uncertainty , 2020 .

[40]  Marc Peter Deisenroth,et al.  Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.

[41]  Luis G. Crespo,et al.  The NASA Langley Multidisciplinary Uncertainty Quantification Challenge , 2014 .

[42]  Sankaran Mahadevan,et al.  A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis , 2016 .

[43]  E. Constantinescu,et al.  Crop physiology calibration in the CLM , 2015 .

[44]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[45]  Waad Subber,et al.  Chemo-thermal model and Gaussian process emulator for combustion synthesis of Ni/Al composites , 2019, Combustion and Flame.

[46]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[47]  Piyush Pandita,et al.  Towards Scalable Gaussian Process Modeling , 2019, Volume 2B: 45th Design Automation Conference.

[48]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[49]  Liping Wang,et al.  A Strategy for Adaptive Sampling of Multi-fidelity Gaussian Process to Reduce Predictive Uncertainty , 2019, Volume 2B: 45th Design Automation Conference.

[50]  Tony L. Schmitz,et al.  Experimental flapping wing optimization and uncertainty quantification using limited samples , 2015 .

[51]  Kevin Ryan,et al.  Bayesian Multi-Source Modeling with Legacy Data , 2018 .

[52]  Liping Wang,et al.  Variance Based Global Sensitivity Analysis for Uncorrelated and Correlated Inputs With Gaussian Processes , 2015 .

[53]  Liping Wang,et al.  Remarks for Scaling Up a General Gaussian Process to Model Large Dataset with Sub-models , 2020 .

[54]  Jesper Kristensen,et al.  Polynomial Representation of the Gaussian Process , 2018 .