Three‐dimensional fluid simulations of the nonlinear drift‐resistive ballooning modes in tokamak edge plasmas

A three‐dimensional study of the turbulence and sheared flow generated by the drift‐resistive ballooning modes in tokamak edge plasmas has been completed. The fluid simulations show that 10%–15% percent density fluctuations can develop in the nonlinear state when the self‐consistently generated shear flow is suppressed. These modes are also found to give rise to poloidally asymmetric particle transport. Characteristic scale lengths of these fluctuations are isotropic in the plane transverse to B and smaller than the connection length along the field line. Sheared poloidal flow is self‐consistently driven by both the Reynolds stress and the Stringer mechanisms. In the presence of self‐consistent shear flow, the transverse spectrum is no longer isotropic transverse to B. The vortices become elongated in the poloidal direction. Also, there is a substantial reduction in both the level of fluctuations of the density and potential and the associated particle transport. These features are in qualitative agreemen...

[1]  Hasegawa,et al.  Self-organization of electrostatic turbulence in a cylindrical plasma. , 1987, Physical review letters.

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  John L. Johnson,et al.  A numerical model for toroidal plasma containment with flow , 1970 .

[4]  Drake,et al.  Spontaneous poloidal spin-up of tokamaks and the transition to the H mode. , 1991, Physical review letters.

[5]  K. Ida,et al.  Edge poloidal rotation profiles of H-mode plasmas in the JFT-2M tokamak , 1991 .

[6]  V. K. Pare,et al.  Transport effects induced by resistive ballooning modes and comparison with high-. beta. /sub p/ ISX-B tokamak confinement , 1983 .

[7]  T. Stringer,et al.  Diffusion in Toroidal Plasmas with Radial Electric Field , 1969 .

[8]  S. Mahajan,et al.  Edge turbulence scaling with shear flow , 1991 .

[9]  J. Drake,et al.  Instability of fluid vortices and generation of sheared flow , 1992 .

[10]  A. Hassam,et al.  Loss of static equilibrium, flow generation and the development of turbulence at the edge of tokamaks , 1992 .

[11]  Patrick H. Diamond,et al.  Theory of resistive pressure-gradient-driven turbulence , 1987 .

[12]  M. Rosenbluth,et al.  Parallel velocity shear instabilities in an inhomogeneous plasma with a sheared magnetic field , 1973 .

[13]  Z. G. An,et al.  Dynamics and fluctuation spectra of electrostatic resistive interchange turbulence , 1986 .

[14]  Wootton,et al.  Evidence for confinement improvement by velocity-shear suppression of edge turbulence. , 1990, Physical review letters.

[15]  Burrell,et al.  Role of edge electric field and poloidal rotation in the L-H transition. , 1990, Physical review letters.

[16]  Thomas M. Antonsen,et al.  Nonlinear reduced fluid equations for toroidal plasmas , 1984 .

[17]  P. Diamond,et al.  Equilibrium spectra and implications for a two-field turbulence model , 1991 .

[18]  B. G. Logan,et al.  Enhanced confinement in tokamaks , 1990 .

[19]  V. Rozhansky,et al.  The effect of the radial electric field on the L–H transitions in tokamaks , 1992 .

[20]  G. Matthews,et al.  Poloidal SOL asymmetries and toroidal flow in DITE , 1990 .

[21]  W. A. Peebles,et al.  Modifications in turbulence and edge electric fields at the L–H transition in the DIII‐D tokamak , 1991 .

[22]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[23]  Kenneth W Gentle,et al.  Texas Experimental Tokamak (TEXT) facility , 1981 .

[24]  T. Antonsen,et al.  Stability of resistive and ideal ballooning modes in the Texas Experimental Tokamak and DIII‐D , 1992 .

[25]  R. Sagdeev,et al.  Peeling of convection cells and the generation of sheared flow , 1992 .

[26]  A. Wootton,et al.  Fluctuations and anomalous transport in tokamaks , 1990 .

[27]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[28]  A. Dimits,et al.  Three-dimensional simulation of del T sub i -driven turbulence and transport , 1991 .

[29]  B. Lipschultz,et al.  Poloidal asymmetries in the scrape-off layer plasma of the Alcator C tokamak , 1987 .

[30]  B. Scott The mechanism of self-sustainment in collisional drift wave turbulence , 1992 .

[31]  S. T. Zalesak,et al.  High order “ZIP” differencing of convective terms , 1981 .

[32]  James F. Drake,et al.  Marfes: Radiative condensation in tokamak edge plasma , 1987 .

[33]  L. L. Lao,et al.  Confinement physics of H-mode discharges in DIII-D , 1989 .

[34]  Patrick H. Diamond,et al.  Theory of mean poloidal flow generation by turbulence , 1991 .

[35]  Brown,et al.  H-mode behavior induced by cross-field currents in a tokamak. , 1989, Physical review letters.

[36]  Vickie E. Lynch,et al.  Electron diamagnetic effects on the resistive pressure‐gradient‐driven turbulence and poloidal flow generation , 1991 .

[37]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[38]  B. A. Carreras,et al.  TEXT tokamak edge turbulence modeling , 1991 .

[39]  P. Diamond,et al.  Statistical mechanics of a two‐field model of drift wave turbulence , 1989 .

[40]  A. Hassam,et al.  Formation of the shear layer in toroidal edge plasma , 1993 .