Integrating de novo and inherited variants in over 42,607 autism cases 1 identifies mutations in new moderate risk genes 2

A full list of the SPARK Consortium members appears at the end of this paper. Abstract Despite the known heritable nature

M. Dennis | L. Soorya | S. Hepburn | S. Brewster | Lynn M. Herbert | R. Jou | V. Gazestani | S. Jacob | T. Pramparo | M. Alessandri | R. Annett | Nicole Bardett | Landon Beeson | Martin E. Butler | S. Carpenter | Lindsey A. Cartner | M. Currin | L. DeMarco | S. Francis | Swami Ganesan | Melissa N. Hale | Monica Haley | Nina Harris | M. Heyman | T. Koomar | Noah Lawson | S. Lee | Natasha Lillie | Malcolm D. Mallardi | Patricia Manning | M. Popp | Lisa M. Prock | Shanping Qiu | Swapnil Shah | Laura Simon | Maira Tafolla | Samantha Thompson | Lucy Wasserburg | Sabrina White | M. DuBois | Thomas | L. Casten | Robin A. Libove | M. Ghaziuddin | P. Heydemann | Luke P. Grosvenor | Sarah A. Mastel | Rachel K. Earl | M. Gwynette | Maria Valicenti-McDermott | R. Shaffer | L. Coppola | R. Bernier | M. Casseus | Lacy Malloch | Malia Beckwith | M. Frayne | M. Hojlo | M. Lopez | Madison Printen | Natalia Gonzalez | Neelay Shah | 1209 | Sharmista Chintalapalli | Sophia Melnyk | Samiza Palmer | Susana Santangelo | Theodore Ho | Molly O’Neil | Steve Skinner | Lisa Yeh | S. Horner | Megan Dunlevy | Nicole M. Russo‐Ponsaran | M. Morrier | M. Baer | Rebecca J Landa | R. N. Doan | Lisa H Shulman | Katherine Tsai | Laura Carpenter | Lisa Cordiero | Lorena Ferreira Corzo | Lauren Kasperson Walsh | Lori Mann | Michelle Coughlin | Michele Cutri | Misia Kowanda | Melinda Koza | Megan Norris | Mahfuza Sabiha | Mustafa Sahin | Marina Sarris | Mojeeb Shir | Matthew Siegel | Morgan Steele | Megan Sweeney | Nicolas Alvarez | Natalie Berger | Nickelle Decius | Nathan Lo | Nancy Long | Natalie Madi | Nicole Mccoy | Nicki Rodriguez | Nicholas Russell | Olivia Newman | Rachel A. Gordon | Renee D. Clark | Shelley Aberle | Shelby Birdwell | Sarah Boland | Sarah Conyers | Sophia D'Ambrosi | S. Kramer | Sandra L. Friedman | Sarely Licona | Sandy Littlefield | Sheena Mathai | Sarah Michaels | S. Randall | Sidi Xu | Tunisia Greene | Teresa Ibanez | Tara Rutter | Tamim Shaikh | Thao Tran | Virginia Galbraith | Vaikunt Ranganathan | Vini Singh | Wenteng CaI | Zachary E. Warren | Stephenson | Leonard Abbeduto | 1193 | Pacheco | Laurie 1194 | Lesher | Michelle 1200 | Jordy | Megan 1201 | McTaggart | Norma 1205 | Calderon | Nicole Takahashi | Nicole 1208 | Targalia | Carbone | Richard 1211 | Marini | Robert T. Schultz | Stephanie 1213 | Booker | Sara 1214 | Eldred | Samantha 1215 | Hunter | So Hyun Kim | Sarah 1218 | Mohiuddin | Sophia 1219 | Sandhu | Sabrina 1220 | Xiao | Taylor 1222 | William Curtis Weaver | YB Choi | Ryan N. Doan | Megan DuBois | Suma Jacob | Myriam Casseus | Luke P Grosvenor | Michelle Heyman | Shelley Randall | L. Abbeduto | Y. Choi | L. K. Walsh

[1]  L. G. Snyder,et al.  Imputing cognitive impairment in SPARK, a large autism cohort , 2021, medRxiv.

[2]  Trygve E Bakken,et al.  Recent ultra-rare inherited variants implicate new autism candidate risk genes , 2021, Nature Genetics.

[3]  Christopher G Chute,et al.  The Human Phenotype Ontology in 2021 , 2020, Nucleic Acids Res..

[4]  Patrick J. Short,et al.  Evidence for 28 genetic disorders discovered by combining healthcare and research data , 2020, Nature.

[5]  Yufeng Shen,et al.  Dissecting Autism Genetic Risk Using Single-cell RNA-seq Data , 2020, bioRxiv.

[6]  Jonathan M. Mudge,et al.  Transcript expression-aware annotation improves rare variant interpretation , 2020, Nature.

[7]  Z. Warren,et al.  Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016 , 2020, Morbidity and mortality weekly report. Surveillance summaries.

[8]  J. Michaelson,et al.  Forecasting risk gene discovery in autism with machine learning and genome-scale data , 2020, Scientific Reports.

[9]  C. Hartl,et al.  INHERITED AND DE NOVO GENETIC RISK FOR AUTISM IMPACTS SHARED BIOLOGICAL NETWORKS , 2019, European Neuropsychopharmacology.

[10]  Richard A Marini,et al.  Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes , 2019, npj Genomic Medicine.

[11]  Laura Pérez-Cano,et al.  Inherited and De Novo Genetic Risk for Autism Impacts Shared Networks , 2019, Cell.

[12]  Swapan Mallick,et al.  Insights into human genetic variation and population history from 929 diverse genomes , 2019, Science.

[13]  Matthew W. Mosconi,et al.  Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism , 2019, Cell.

[14]  Brian E. Cade,et al.  Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program , 2019, Nature.

[15]  John P. Rice,et al.  Identification of common genetic risk variants for autism spectrum disorder , 2019, Nature Genetics.

[16]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[17]  David G. Knowles,et al.  Predicting Splicing from Primary Sequence with Deep Learning , 2019, Cell.

[18]  Ryan L. Collins,et al.  Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder , 2018, Science.

[19]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[20]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[21]  Thomas Colthurst,et al.  A universal SNP and small-indel variant caller using deep neural networks , 2018, Nature Biotechnology.

[22]  Jeffrey D. Mandell,et al.  De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis , 2018, Cell reports.

[23]  M. Daly,et al.  De novo variants in neurodevelopmental disorders with epilepsy , 2018, Nature Genetics.

[24]  Ohad Rodeh,et al.  GLnexus: joint variant calling for large cohort sequencing , 2018, bioRxiv.

[25]  Jörg Hakenberg,et al.  Predicting the clinical impact of human mutation with deep neural networks , 2018, Nature Genetics.

[26]  Ryan L. Collins,et al.  An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder , 2018, Nature Genetics.

[27]  Anibal Gutierrez,et al.  SPARK: A US Cohort of 50,000 Families to Accelerate Autism Research , 2018, Neuron.

[28]  B. H. Lo,et al.  Autism Spectrum Disorder , 2018, Journal of paediatrics and child health.

[29]  Mauricio O. Carneiro,et al.  Scaling accurate genetic variant discovery to tens of thousands of samples , 2017, bioRxiv.

[30]  Sven Sandin,et al.  The Heritability of Autism Spectrum Disorder , 2017, JAMA.

[31]  Brent S. Pedersen,et al.  Mosdepth: quick coverage calculation for genomes and exomes , 2017, bioRxiv.

[32]  J. Eppig Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse , 2017, ILAR journal.

[33]  M. Daly,et al.  Regional missense constraint improves variant deleteriousness prediction , 2017, bioRxiv.

[34]  Hoang T. Nguyen,et al.  Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders , 2017, Genome Medicine.

[35]  David P. Nusinow,et al.  Estimating the Selective Effects of Heterozygous Protein Truncating Variants from Human Exome Data , 2017, Nature Genetics.

[36]  H. Kang,et al.  Extremely rare variants reveal patterns of germline mutation rate heterogeneity in humans , 2017, Nature Communications.

[37]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[38]  Shilpa Garg,et al.  WhatsHap: fast and accurate read-based phasing , 2016, bioRxiv.

[39]  G. Clowry,et al.  HDBR Expression: A Unique Resource for Global and Individual Gene Expression Studies during Early Human Brain Development , 2016, Front. Neuroanat..

[40]  Trevor Hastie,et al.  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. , 2016, American journal of human genetics.

[41]  Stephan J Sanders,et al.  Refining the role of de novo protein truncating variants in neurodevelopmental disorders using population reference samples , 2016, Nature Genetics.

[42]  Seth G. N. Grant,et al.  Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment , 2016, Front. Neurosci..

[43]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[44]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[45]  Frederick E. Dewey,et al.  CLAMMS: a scalable algorithm for calling common and rare copy number variants from exome sequencing data , 2015, Bioinform..

[46]  G. Abecasis,et al.  Unified representation of genetic variants , 2015, Bioinform..

[47]  Terrence J. Sejnowski,et al.  Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain , 2015, Neuron.

[48]  Kali T. Witherspoon,et al.  Excess of rare, inherited truncating mutations in autism , 2015, Nature Genetics.

[49]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[50]  A. Thurm,et al.  Measurement of Nonverbal IQ in Autism Spectrum Disorder: Scores in Young Adulthood Compared to Early Childhood , 2015, Journal of autism and developmental disorders.

[51]  Stephan J Sanders,et al.  The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment , 2015, Nature Communications.

[52]  Tomas W. Fitzgerald,et al.  Large-scale discovery of novel genetic causes of developmental disorders , 2014, Nature.

[53]  Jeffrey Staples,et al.  PRIMUS: rapid reconstruction of pedigrees from genome-wide estimates of identity by descent. , 2014, American journal of human genetics.

[54]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[55]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[56]  Kali T. Witherspoon,et al.  Recurrent de novo mutations implicate novel genes underlying simplex autism risk , 2014, Nature Communications.

[57]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[58]  Kathryn Roeder,et al.  Most genetic risk for autism resides with common variation , 2014, Nature Genetics.

[59]  C. Hultman,et al.  The familial risk of autism. , 2014, JAMA.

[60]  Michael Q. Zhang,et al.  HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. , 2014, Cell reports.

[61]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[62]  J. Nielsen,et al.  Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. , 2014, Molecular & cellular proteomics : MCP.

[63]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[64]  M. Daly,et al.  Searching for missing heritability: Designing rare variant association studies , 2014, Proceedings of the National Academy of Sciences.

[65]  S. Horvath,et al.  Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism , 2013, Cell.

[66]  Wei Niu,et al.  Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism , 2013, Cell.

[67]  Sharmila Banerjee-Basu,et al.  SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs) , 2013, Molecular Autism.

[68]  Kathryn Roeder,et al.  Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes , 2013, PLoS genetics.

[69]  Chia-Yen Chen,et al.  Improved ancestry inference using weights from external reference panels , 2013, Bioinform..

[70]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[71]  K. Roeder,et al.  The Autism Sequencing Consortium: Large-Scale, High-Throughput Sequencing in Autism Spectrum Disorders , 2012, Neuron.

[72]  G. Abecasis,et al.  Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. , 2012, American journal of human genetics.

[73]  Jacy L. Wagnon,et al.  CELF4 Regulates Translation and Local Abundance of a Vast Set of mRNAs, Including Genes Associated with Regulation of Synaptic Function , 2012, PLoS genetics.

[74]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[75]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[76]  G. Kirov,et al.  De Novo Rates and Selection of Schizophrenia-Associated Copy Number Variants , 2011, Biological Psychiatry.

[77]  J. Fak,et al.  FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism , 2011, Cell.

[78]  Markus Hsi-Yang Fritz,et al.  Efficient storage of high throughput DNA sequencing data using reference-based compression. , 2011, Genome research.

[79]  Sean M. Grimmond,et al.  The uniqueome: a mappability resource for short-tag sequencing , 2010, Bioinform..

[80]  D. MacArthur,et al.  Loss-of-function variants in the genomes of healthy humans. , 2010, Human molecular genetics.

[81]  Joshua M. Korn,et al.  Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function , 2010, PLoS genetics.

[82]  Wei-Min Chen,et al.  A generalized family-based association test for dichotomous traits. , 2009, American journal of human genetics.

[83]  Norman Arnheim,et al.  Understanding what determines the frequency and pattern of human germline mutations , 2009, Nature Reviews Genetics.

[84]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[85]  W J Ewens,et al.  The TDT and other family-based tests for linkage disequilibrium and association. , 1996, American journal of human genetics.

[86]  W. Ewens,et al.  The transmission/disequilibrium test: history, subdivision, and admixture. , 1995, American journal of human genetics.

[87]  R. L. Thorndike Who belongs in the family? , 1953 .

[88]  P. McGuffin,et al.  Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs their unaffected siblings. , 2013, JAMA psychiatry.

[89]  M. Feldman,et al.  Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation , 2008 .

[90]  L. Rodríguez The Albert Einstein College of Medicine , 2008 .

[91]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[92]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.