Topological Signals of Singularities in Ricci Flow

We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point) from local singularity formation (neckpinch). Finally, we discuss the interpretation and implication of these results and future applications.

[1]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[2]  P. Alsing,et al.  Equivalence of Simplicial Ricci Flow and Hamilton's Ricci Flow for 3D Neckpinch Geometries , 2014, 1404.4055.

[3]  F. Verstraete,et al.  Geometry of Matrix Product States: metric, parallel transport and curvature , 2012, 1210.7710.

[4]  Robin Forman,et al.  Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..

[5]  Warner A. Miller The geometrodynamic content of the Regge equations as illuminated by the boundary of a boundary principle , 1986 .

[6]  S. Sherwin,et al.  Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations , 2005 .

[7]  Radmila Sazdanovic,et al.  Simplicial Models and Topological Inference in Biological Systems , 2014, Discrete and Topological Models in Molecular Biology.

[8]  W. Miller,et al.  A geometric construction of the Riemann scalar curvature in Regge calculus , 2008, 0805.2411.

[9]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[10]  Shing-Tung Yau,et al.  Fundamentals of Computational Conformal Geometry , 2010, Math. Comput. Sci..

[11]  Maximilian Kreuzer,et al.  Geometry, Topology and Physics I , 2009 .

[12]  Vijay Kumar,et al.  Persistent Homology for Path Planning in Uncertain Environments , 2015, IEEE Transactions on Robotics.

[13]  Peter John Wood,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images , 2022 .

[14]  D. Glickenstein,et al.  Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds , 2009, 0906.1560.

[15]  Konstantin Mischaikow,et al.  Evolution of force networks in dense particulate media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  R. Forman Morse Theory for Cell Complexes , 1998 .

[17]  S. Yau,et al.  Simplicial Ricci Flow , 2013, 1302.0804.

[18]  Ginestra Bianconi,et al.  Entropy measures for networks: toward an information theory of complex topologies. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Jie Gao,et al.  Scalable routing in 3D high genus sensor networks using graph embedding , 2012, 2012 Proceedings IEEE INFOCOM.

[20]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[21]  D. A. Stone,et al.  Sectional curvature in piecewise linear manifolds , 1973 .

[22]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[23]  P. Baird The Ricci flow: techniques and applications -Part I: Geometric aspects (Mathematical Surveys and Monographs 135) , 2008 .

[24]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[25]  Sigurd B. Angenent,et al.  Degenerate neckpinches in Ricci flow , 2012 .

[26]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[27]  E. Woolgar,et al.  Some Applications of Ricci Flow in Physics , 2007, 0708.2144.

[28]  Adam Watkins,et al.  Topological and statistical behavior classifiers for tracking applications , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[30]  Mark Van Raamsdonk Building up spacetime with quantum entanglement , 2010 .

[31]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[32]  Emil Saucan,et al.  Metric Ricci curvature for $PL$ manifolds , 2012, ArXiv.

[33]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[34]  Mauro Carfora,et al.  The Wasserstein geometry of non-linear sigma models and the Hamilton-Perelman Ricci flow , 2014 .

[35]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[36]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[37]  Huabin Ge,et al.  Discrete quasi-Einstein metrics and combinatorial curvature flows in 3-dimension , 2013, 1301.3398.

[38]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[39]  Dan Knopf,et al.  An example of neckpinching for Ricci flow on $S^{n+1}$ , 2004 .

[40]  R. Ho Algebraic Topology , 2022 .

[41]  Sigurd B. Angenent,et al.  Formal matched asymptotics for degenerate Ricci flow neckpinches , 2011 .

[42]  Mauro Carfora,et al.  Renormalization Group and the Ricci Flow , 2010, 1001.3595.

[43]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[44]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[45]  Aaron Trout Positively Curved Combinatorial 3-Manifolds , 2010, Electron. J. Comb..

[46]  Scott N. Walck,et al.  Topology of the three-qubit space of entanglement types , 2005 .

[47]  P. Alsing,et al.  The Simplicial Ricci Tensor , 2011, 1107.2458.

[48]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[49]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[50]  M. Raamsdonk,et al.  Building up spacetime with quantum entanglement , 2010, 1005.3035.

[51]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[52]  R. Bishop,et al.  Tensor Analysis on Manifolds , 1980 .

[53]  Richard Friedberg,et al.  Derivation of Regge's action from Einstein's theory of general relativity☆ , 1984 .

[54]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..

[55]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[56]  B. Chow,et al.  The Ricci Flow : An Introduction I , 2013 .

[57]  J. Jost,et al.  Network Topology vs. Geometry: From persistent Homology to Curvature , 2017 .

[58]  D. Glickenstein Geometric triangulations and discrete Laplacians on manifolds , 2005, math/0508188.

[59]  Mauro Carfora,et al.  Ricci Flow Conjugated Initial Data Sets for Einstein Equations , 2010, 1006.1500.

[60]  S. Yau,et al.  On exterior calculus and curvature in piecewise-flat manifolds , 2012, 1212.0919.

[61]  Warner A. Miller,et al.  A Fully (3+1)-D Regge calculus model of the Kasner cosmology , 1997, gr-qc/9706034.

[62]  Warner A. Miller The Hilbert action in Regge calculus , 1997 .

[63]  David Garfinkle,et al.  The Modelling of Degenerate Neck Pinch Singularities in Ricci Flow by Bryant Solitons , 2007 .

[64]  Huiling Gu,et al.  The Existence of Type II Singularities for the Ricci Flow on $S^{n+1}$ , 2007, 0707.0033.

[65]  M. Carfora The Wasserstein geometry of nonlinear σ models and the Hamilton–Perelman Ricci flow , 2014, 1405.0827.

[66]  T. Regge General relativity without coordinates , 1961 .

[67]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .