Target Prediction Algorithms and Bioinformatics Resources for miRNA Studies

The recent publication of the Chinese hamster ovary (CHO) genome has heralded the beginning of an exciting new era of research in this industrially important cell line. Advances in our understanding of CHO at the molecular level have the potential to facilitate the development of modified cell lines and biomarkers to increase the efficiency of recombinant protein production processes. In recent years there has been growing interest in the function of small non-coding RNA molecules, known as microRNAs (miRNAs), as targets to enable multigene CHO cell engineering. To date, miRNAs have been shown to be dysregulated in a number of processes including cell growth and apoptosis.

[1]  Byoung-Tak Zhang,et al.  miTarget: microRNA target gene prediction using a support vector machine , 2006, BMC Bioinformatics.

[2]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[3]  D. Bartel,et al.  Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of lsy-6 and Other miRNAs , 2011, Nature Structural &Molecular Biology.

[4]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[5]  Jan Krüger,et al.  RNAhybrid: microRNA target prediction easy, fast and flexible , 2006, Nucleic Acids Res..

[6]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[7]  Xianghuo He,et al.  Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region , 2010, Oncogene.

[8]  A. Hatzigeorgiou,et al.  A guide through present computational approaches for the identification of mammalian microRNA targets , 2006, Nature Methods.

[9]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[10]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[11]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[12]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[13]  Tamas Dalmay,et al.  Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss , 2009, Nature Genetics.

[14]  C. Willoughby,et al.  Mutation altering the miR-184 seed region causes familial keratoconus with cataract. , 2011, American journal of human genetics.

[15]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[16]  Norbert Gretz,et al.  miRWalk - Database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes , 2011, J. Biomed. Informatics.

[17]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[18]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[19]  Aliaksandr Druz,et al.  A novel microRNA mmu‐miR‐466h affects apoptosis regulation in mammalian cells , 2011, Biotechnology and bioengineering.

[20]  S. Bahr,et al.  Profiling highly conserved microrna expression in recombinant IgG‐producing and parental Chinese hamster ovary cells , 2011, Biotechnology progress.

[21]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[22]  Masaru Tomita,et al.  Computational analysis of microRNA targets in Caenorhabditis elegans. , 2006, Gene.

[23]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[24]  M. Hentze,et al.  Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame. , 2010, RNA.

[25]  Margherita Mutarelli,et al.  HOCTAR database: A unique resource for microRNA target prediction , 2011, Gene.

[26]  Renate Kunert,et al.  Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular engineering , 2011, Journal of biotechnology.

[27]  Boqin Qiang,et al.  Improving the prediction of human microRNA target genes by using ensemble algorithm , 2007, FEBS letters.

[28]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[29]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[30]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[31]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[32]  Brian D Athey,et al.  New class of microRNA targets containing simultaneous 5'-UTR and 3'-UTR interaction sites. , 2009, Genome research.

[33]  Dominik Lutter,et al.  GeneSet2miRNA: finding the signature of cooperative miRNA activities in the gene lists , 2009, Nucleic Acids Res..

[34]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[35]  B. Berger,et al.  Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. , 2011, Genome research.

[36]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[37]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[38]  C. Clarke,et al.  Impact of miR-7 over-expression on the proteome of Chinese hamster ovary cells. , 2012, Journal of biotechnology.

[39]  Profiling conserved microRNA expression in recombinant CHO cell lines using Illumina sequencing. , 2012, Biotechnology and bioengineering.

[40]  M. Stoffel,et al.  MicroRNA-96 Directly Inhibits γ-Globin Expression in Human Erythropoiesis , 2011, PloS one.

[41]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[42]  Nectarios Koziris,et al.  DIANA-microT web server: elucidating microRNA functions through target prediction , 2009, Nucleic Acids Res..

[43]  R. Giegerich,et al.  Fast and effective prediction of microRNA/target duplexes. , 2004, RNA.

[44]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[45]  C. Clarke,et al.  Engineering CHO cell growth and recombinant protein productivity by overexpression of miR-7. , 2011, Journal of biotechnology.

[46]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[47]  Niraj Kumar,et al.  Initial identification of low temperature and culture stage induction of miRNA expression in suspension CHO-K1 cells. , 2007, Journal of biotechnology.

[48]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[49]  Martin Reczko,et al.  Lost in translation: an assessment and perspective for computational microRNA target identification , 2009, Bioinform..

[50]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[51]  Nectarios Koziris,et al.  Accurate microRNA target prediction correlates with protein repression levels , 2009, BMC Bioinformatics.

[52]  Peng Jiang,et al.  MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features , 2007, Nucleic Acids Res..

[53]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[54]  U. A. Ørom,et al.  Experimental identification of microRNA targets. , 2010, Gene.

[55]  Louise C. Showe,et al.  Naïve Bayes for microRNA target predictions - machine learning for microRNA targets , 2007, Bioinform..

[56]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[57]  John J Rossi,et al.  SNPs in human miRNA genes affect biogenesis and function. , 2009, RNA.

[58]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[59]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[60]  Kelvin H. Lee,et al.  The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line , 2011, Nature Biotechnology.

[61]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[62]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[63]  O. Hobert Common logic of transcription factor and microRNA action. , 2004, Trends in biochemical sciences.

[64]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[65]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[66]  Vaibhav Jadhav,et al.  Dynamic mRNA and miRNA profiling of CHO‐K1 suspension cell cultures , 2012, Biotechnology journal.

[67]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[68]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[69]  Oliver Hofmann,et al.  miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. , 2009, Molecular cell.

[70]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[71]  Nitya M. Jacob,et al.  Conserved microRNAs in Chinese hamster ovary cell lines. , 2011, Biotechnology and bioengineering.