Bungarus fasciatus venom from eastern and north-east India: venom variation and immune cross-reactivity with Indian polyvalent antivenoms

[1]  N. Tan,et al.  Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra (Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization , 2021, Toxins.

[2]  S. Kularatne,et al.  Paediatric cases of Ceylon krait (Bungarus ceylonicus) bites and some similar looking non-venomous snakebites in Sri Lanka: misidentification and antivenom administration. , 2021, Toxicon : official journal of the International Society on Toxinology.

[3]  N. Tan,et al.  Proteomics and neutralization of Bungarus multicinctus (Many-banded Krait) venom: Intra-specific comparisons between specimens from China and Taiwan. , 2021, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[4]  K. Y. Tan,et al.  Comparative venom proteomics of banded krait (Bungarus fasciatus) from five geographical locales: Correlation of venom lethality, immunoreactivity and antivenom neutralization. , 2020, Acta tropica.

[5]  P. Jha,et al.  Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study , 2020, eLife.

[6]  P. Suwanwaree,et al.  Spatial ecology study reveals nest attendance and habitat preference of banded kraits (Bungarus fasciatus) , 2019 .

[7]  V. Sitprija,et al.  Geographical variations in king cobra (Ophiophagus hannah) venom from Thailand, Malaysia, Indonesia and China: On venom lethality, antivenom immunoreactivity and in vivo neutralization. , 2019, Acta tropica.

[8]  S. Saha,et al.  Comparative analysis of Naja kaouthia venom from North-East India and Bangladesh and its cross reactivity with Indian polyvalent antivenoms. , 2019, Toxicon : official journal of the International Society on Toxinology.

[9]  N. Tan,et al.  Venom proteome of Bungarus sindanus (Sind krait) from Pakistan and in vivo cross-neutralization of toxicity using an Indian polyvalent antivenom. , 2019, Journal of proteomics.

[10]  N. Tan,et al.  Distinctive Distribution of Secretory Phospholipases A2 in the Venoms of Afro-Asian Cobras (Subgenus: Naja, Afronaja, Boulengerina and Uraeus) , 2019, Toxins.

[11]  A. Anand,et al.  Rational truncation of aptamer for cross-species application to detect krait envenomation , 2018, Scientific Reports.

[12]  U. Udomsubpayakul,et al.  Krait envenomation in Thailand , 2018, Therapeutics and clinical risk management.

[13]  J. Gutiérrez,et al.  Current technology for the industrial manufacture of snake antivenoms , 2018, Toxicon : official journal of the International Society on Toxinology.

[14]  J. Calvete,et al.  The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms , 2018, Communications Biology.

[15]  B. Pál,et al.  Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary , 2017, Toxicon : official journal of the International Society on Toxinology.

[16]  G. Isbister,et al.  A Review and Database of Snake Venom Proteomes , 2017, Toxins.

[17]  J. Chippaux Snakebite envenomation turns again into a neglected tropical disease! , 2017, Journal of Venomous Animals and Toxins including Tropical Diseases.

[18]  N. Tan,et al.  Venomics of Bungarus caeruleus (Indian krait): Comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan. , 2017, Journal of proteomics.

[19]  J. Calvete,et al.  Third Generation Antivenomics: Pushing the Limits of the In Vitro Preclinical Assessment of Antivenoms , 2017, Toxins.

[20]  M. F. Ahsan,et al.  Status, distribution and threats of kraits (Squamata: Elapidae: Bungarus) in Bangladesh , 2017 .

[21]  U. Kuch,et al.  Bites by the Monocled Cobra, Naja kaouthia, in Chittagong Division, Bangladesh: Epidemiology, Clinical Features of Envenoming and Management of 70 Identified Cases , 2017, The American journal of tropical medicine and hygiene.

[22]  K. Ratanabanangkoon,et al.  A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia , 2016, PLoS neglected tropical diseases.

[23]  R. Kini,et al.  Unveiling the complexities of Daboia russelii venom, a medically important snake of India, by tandem mass spectrometry. , 2015, Toxicon : official journal of the International Society on Toxinology.

[24]  Y. Utkin,et al.  Quantitative proteomic analysis of Vietnamese krait venoms: Neurotoxins are the major components in Bungarus multicinctus and phospholipases A2 in Bungarus fasciatus. , 2015, Toxicon : official journal of the International Society on Toxinology.

[25]  Hoang Ngoc Anh,et al.  Venoms of kraits Bungarus multicinctus and Bungarus fasciatus contain anticoagulant proteins , 2015, Doklady Biochemistry and Biophysics.

[26]  Iekhsan Othman,et al.  Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. , 2014, Journal of proteomics.

[27]  Xi Wang,et al.  Recognition of Bungarus multicinctus Venom by a DNA Aptamer against β-Bungarotoxin , 2014, PloS one.

[28]  G. Nilson,et al.  A NEW SPECIES OF KRAIT, Bungarus (REPTILIA, ELAPIDAE, BUNGARINAE) AND THE FIRST RECORD OF THAT GENUS IN IRAN* , 2014 .

[29]  N. Aubrey,et al.  Engineering Venom’s Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential , 2014, Toxins.

[30]  T. Kang,et al.  Identification and characterisation of novel inhibitors on extrinsic tenase complex from Bungarus fasciatus (banded krait) venom , 2014, Thrombosis and Haemostasis.

[31]  Iekhsan Othman,et al.  In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus) Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand , 2014, Toxins.

[32]  S. A. Ali,et al.  Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). , 2013, Journal of proteomics.

[33]  G. Isbister,et al.  Immune Response to Snake Envenoming and Treatment with Antivenom; Complement Activation, Cytokine Production and Mast Cell Degranulation , 2013, PLoS neglected tropical diseases.

[34]  J. Calvete,et al.  Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. , 2012, Toxicon : official journal of the International Society on Toxinology.

[35]  A. Mukherjee Green medicine as a harmonizing tool to antivenom therapy for the clinical management of snakebite: The road ahead , 2012, The Indian journal of medical research.

[36]  V. Sitprija,et al.  Characterization of venomous snakes of Thailand , 2011 .

[37]  J. Ragle,et al.  IUCN Red List of Threatened Species , 2010 .

[38]  J. Calvete,et al.  Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: integrating antivenomics and neutralization approaches. , 2010, Journal of proteome research.

[39]  S. Mackessy Handbook of Venoms and Toxins of Reptiles , 2009 .

[40]  J. Shultz A phylogenetic analysis of the arachnid orders based on morphological characters , 2007 .

[41]  S. Serrano,et al.  Mass spectrometric analysis of the individual variability of Bothrops jararaca venom peptide fraction. Evidence for sex-based variation among the bradykinin-potentiating peptides. , 2007, Rapid communications in mass spectrometry : RCM.

[42]  I. Tsai,et al.  Sequences, geographic variations and molecular phylogeny of venom phospholipases and threefinger toxins of eastern India Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2 , 2007, The FEBS journal.

[43]  R. Shashidharamurthy,et al.  Region-specific neutralization of Indian cobra (Naja naja) venom by polyclonal antibody raised against the eastern regional venom: A comparative study of the venoms from three different geographical distributions. , 2007, International immunopharmacology.

[44]  T. Rabilloud,et al.  Silver staining of proteins in polyacrylamide gels , 2006, Nature Protocols.

[45]  U. Kuch,et al.  A New Species of Krait (Squamata: Elapidae) from the Red River System of Northern Vietnam , 2005, Copeia.

[46]  J. Harris,et al.  β-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction , 2004, Neuropharmacology.

[47]  K. Girish,et al.  Variation in biochemical and pharmacological properties of Indian cobra (Naja naja naja) venom due to geographical distribution , 2004, Molecular and Cellular Biochemistry.

[48]  U. Kuch,et al.  Isolation, toxicity and amino terminal sequences of three major neurotoxins in the venom of Malayan krait (Bungarus candidus) from Thailand. , 2003, Journal of biochemistry.

[49]  U. Kuch,et al.  Identification of alpha-bungarotoxin (A31) as the major postsynaptic neurotoxin, and complete nucleotide identity of a genomic DNA of Bungarus candidus from Java with exons of the Bungarus multicinctus alpha-bungarotoxin (A31) gene. , 2003, Toxicon : official journal of the International Society on Toxinology.

[50]  S. Aird,et al.  Prey specificity, comparative lethality and compositional differences of coral snake venoms. , 2001, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[51]  D. Warrell WHO/SEARO Guidelines for the clinical management of snake bites in the Southeast Asian region. , 1999, The Southeast Asian journal of tropical medicine and public health.

[52]  A. Htut,et al.  Envenoming by Chinese krait (Bungarus multicinctus) and banded krait (B. fasciatus) in Myanmar. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[53]  J. Slowinski A Phylogenetic Analysis of Bungarus (Elapidae) Based on Morphological Characters , 1994 .

[54]  Snakeman: The Story of a Naturalist Zai Whitaker The India Magazine Books, Business India Group, 18th Floor, Nirmal, Nariman Point, Bombay 400021, India, 1989, 185 pp, HB Rs 195.00 (or $US15.00 including registered airmail postage) , 1990, Oryx.

[55]  C. H. Poh,et al.  The lethal and biochemical properties of Bungarus candidus (Malayan krait) venom and venom fractions. , 1989, Toxicon : official journal of the International Society on Toxinology.

[56]  N. White,et al.  Severe neurotoxic envenoming by the Malayan krait Bungarus candidus (Linnaeus): response to antivenom and anticholinesterase. , 1983, British medical journal.

[57]  T. Boulikas,et al.  Silver staining of proteins in polyacrylamide gels. , 1981, Analytical biochemistry.

[58]  R. Straight,et al.  The midget faded rattlesnake (Crotalus viridis concolor) venom: lethal toxicity and individual variability. , 1977, Toxicon : official journal of the International Society on Toxinology.

[59]  C. Teng,et al.  Fibrinogenolytic enzymes of Trimeresurus mucrosquamatus venom. , 1976, Biochimica et biophysica acta.

[60]  I. Chen,et al.  Ultrastructural changes in the motor nerve terminals caused by β-bungarotoxin , 1970, Virchows Archiv B Cell Pathology.