The moduli space of two-convex embedded spheres

We prove that the moduli space of 2-convex embedded n-spheres in R^{n+1} is path-connected for every n. Our proof uses mean curvature flow with surgery and can be seen as an extrinsic analog to Marques' influential proof of the path-connectedness of the moduli space of positive scalar curvature metics on three-manifolds.

[1]  Singularity Profile in the Mean Curvature Flow , 2009, 0902.2261.

[2]  Gerhard Huisken,et al.  Local and global behaviour of hypersurfaces moving by mean curvature , 1993 .

[3]  M. Kreck,et al.  NONCONNECTED MODULI SPACES OF POSITIVE SECTIONAL CURVATURE METRICS , 1993 .

[4]  B. Andrews Noncollapsing in mean-convex mean curvature flow , 2012 .

[5]  Gerhard Huisken,et al.  Mean curvature flow with surgeries of two–convex hypersurfaces , 2009 .

[6]  Le Cerf de la Viéville,et al.  Sur les difféomorphismes de la sphère de dimension trois (Г[4]=0) , 1968 .

[7]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[8]  F. C. Marques Deforming three-manifolds with positive scalar curvature , 2009, 0907.2444.

[9]  S. Angenent,et al.  Degenerate neckpinches in mean curvature flow. , 1997 .

[10]  A. Hatcher,et al.  A proof of the Smale Conjecture, Diff(S3) 0(4) , 1983 .

[11]  Mean curvature flow with surgery of mean convex surfaces in $$\mathbb {R}^3$$R3 , 2013, 1309.1461.

[12]  B. Kleiner,et al.  Mean curvature flow with surgery , 2014, 1404.2332.

[13]  James R. Munkres,et al.  Differentiable isotopies on the $2$-sphere. , 1960 .

[14]  S. J. Kleene,et al.  Mean curvature self-shrinkers of high genus: Non-compact examples , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).

[15]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[16]  G. Huisken,et al.  Convexity estimates for mean curvature flow and singularities of mean convex surfaces , 1999 .

[17]  M. Gromov,et al.  The classification of simply connected manifolds of positive scalar curvature , 1980 .

[18]  J. Milnor On Manifolds Homeomorphic to the 7-Sphere , 1956 .

[19]  S. Yau,et al.  On the structure of manifolds with positive scalar curvature , 1979 .

[20]  Stephen Smale,et al.  DIFFEOMORPHISMS OF THE 2-SPHERE , 1959 .

[21]  Robert Haslhofer Uniqueness of the bowl soliton , 2014, 1408.3145.

[22]  B. Kleiner,et al.  Mean Curvature Flow of Mean Convex Hypersurfaces , 2013, 1304.0926.

[23]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[24]  S. Brendle,et al.  Manifolds with 1/4-pinched curvature are space forms , 2007, 0705.0766.

[25]  Y. Giga,et al.  Mean curvature flow through singularities for surfaces of rotation , 1991 .

[26]  J. W. Alexander On the Subdivision of 3-Space by a Polyhedron. , 1924, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Schick,et al.  The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature , 2012, 1204.6474.