NDVI-based land-cover change detection using harmonic analysis

This study presents a normalized difference vegetation index (NDVI)-based land-cover change detection method based on harmonic analysis. Multi-temporal NDVI data show seasonal variation characteristics in the time domain. A harmonic model represents the characterization of the temporal variability in a data set over a local region corresponding to a pixel through its harmonic components. In this research, annual land-cover change detection is performed by tracking the temporal dynamics through analysing harmonic components. A simple but effective noise reduction process is also proposed to provide the necessary high-quality data stream for the multi-temporal NDVI analysis based on the statistics of the observed oscillations. The proposed algorithm was tested and evaluated with the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the MYD13Q1, 16 day L3 global 250 m SIN grid (v005) VI data set. The results indicate that the proposed algorithm provides a computationally inexpensive automatic method to monitor vegetation conditions and long-term land-cover change over large regions. The method described here is particularly useful for monitoring changes in well-established deciduous forests with developed canopies.

[1]  F. Veroustraete,et al.  Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China , 2006 .

[2]  H. Doran,et al.  Harmonic Analysis of Seasonal Data: Some Important Properties , 1972 .

[3]  P. Beck,et al.  Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI , 2006 .

[4]  Ranga B. Myneni,et al.  The interpretation of spectral vegetation indexes , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[5]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[6]  D. Lu,et al.  Change detection techniques , 2004 .

[7]  S. Frolking,et al.  Sensitivity of vegetation indices to atmospheric aerosols: Continental-scale observations in Northern Asia , 2003 .

[8]  A. Mathur,et al.  Denoising and wavelet-based feature extraction of MODIS multi-temporal vegetation signatures , 2005, International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005..

[9]  Joakim Ekström,et al.  Mahalanobis' Distance Beyond Normal Distributions , 2011 .

[10]  Jennifer N. Hird,et al.  Noise reduction of NDVI time series: An empirical comparison of selected techniques , 2009 .

[11]  S. A. Samson,et al.  Two indices to characterize temporal patterns in the spectral response of vegetation , 1993 .

[12]  J. Mustard,et al.  Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil , 2008 .

[13]  S. Liang,et al.  Modeling MODIS LAI time series using three statistical methods , 2010 .

[14]  Chunlin Huang,et al.  A Simplified Data Assimilation Method for Reconstructing Time-Series MODIS NDVI Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Steven Platnick,et al.  Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  J. L. Lovell,et al.  Filtering Pathfinder AVHRR Land NDVI data for Australia , 2001 .

[17]  D. Legates,et al.  Crop identification using harmonic analysis of time-series AVHRR NDVI data , 2002 .

[18]  M. Nellis,et al.  Seasonal variation of heterogeneity in the tallgrass prairie : a quantitative measure using remote sensing , 1991 .

[19]  J. Townshend,et al.  Detection of land cover changes using MODIS 250 m data , 2002 .

[20]  W. Verhoef,et al.  Reconstructing cloudfree NDVI composites using Fourier analysis of time series , 2000 .

[21]  A. Huete,et al.  MODIS VEGETATION INDEX ( MOD 13 ) ALGORITHM THEORETICAL BASIS DOCUMENT Version 3 . 1 Principal Investigators , 1999 .

[22]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[23]  Alan H. Strahler,et al.  Change-vector analysis in multitemporal space: a tool to detect and categorize land-cover change pro , 1994 .

[24]  K. Yoshino,et al.  CHANGE DETECTION IN LAND-USE AND LAND-COVER DYNAMICS AT A REGIONAL SCALE FROM MODIS TIME-SERIES IMAGERY , 2012 .

[25]  Bradley C. Reed,et al.  Trend Analysis of Time-Series Phenology of North America Derived from Satellite Data , 2006 .

[26]  John F. Mustard,et al.  A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data , 2007 .

[27]  G. Shao Long-term field studies of old-growth forests on Changbai Mountain in Northeast China , 2011, Annals of Forest Science.

[28]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[29]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[30]  J. Eastman,et al.  Long sequence time series evaluation using standardized principal components , 1993 .

[31]  T. Sakamoto,et al.  A crop phenology detection method using time-series MODIS data , 2005 .

[32]  N. Pettorelli,et al.  Using the satellite-derived NDVI to assess ecological responses to environmental change. , 2005, Trends in ecology & evolution.

[33]  Per Jönsson,et al.  Seasonality extraction by function fitting to time-series of satellite sensor data , 2002, IEEE Trans. Geosci. Remote. Sens..

[34]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  Xiaoliang Lu,et al.  Removal of Noise by Wavelet Method to Generate High Quality Temporal Data of Terrestrial MODIS Products , 2007 .

[36]  R. Lunetta,et al.  Land-cover change detection using multi-temporal MODIS NDVI data , 2006 .

[37]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[38]  D. Roy,et al.  The MODIS Land product quality assessment approach , 2002 .

[39]  Jonathan Seaquist,et al.  Improving the estimation of noise from NOAA AVHRR NDVI for Africa using geostatistics , 2001 .