Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

[1]  T. Endo,et al.  An experimental study on the ignition ability of a laser-induced gaseous breakdown , 2017 .

[2]  A. Yalin,et al.  Threshold characteristics of ultraviolet and near infrared nanosecond laser induced plasmas , 2016 .

[3]  Qing Wang,et al.  VCSEL-pumped passively Q-switched monolithic solid-state lasers , 2016, SPIE LASE.

[4]  M. Oschwald,et al.  Experimental Study of a Laser-Ignited Liquid Cryogenic Rocket Engine , 2015 .

[5]  A. Yalin,et al.  High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers , 2014, Materials.

[6]  H. Furutani,et al.  Breakdown plasma and vortex flow control for laser ignition using a combination of nano- and femto-second lasers. , 2014, Optics express.

[7]  Eiji Tomita,et al.  Laser-induced plasma generation and evolution in a transient spray. , 2014, Optics express.

[8]  Azer P Yalin,et al.  High power fiber delivery for laser ignition applications. , 2013, Optics express.

[9]  Chiara Manfletti,et al.  Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser. , 2013, Optics express.

[10]  A. Yalin,et al.  Laser Plasma Formation in Air Using Dual Pulse Pre-Ionization , 2013 .

[11]  T. Taira,et al.  High Peak Power, Passively Q-Switched Yb:YAG/Cr:YAG Micro-Lasers , 2013, IEEE Journal of Quantum Electronics.

[12]  T. Taira Microchip laser, ceramic laser toward Giant Micro-photonics , 2012, 2012 17th Opto-Electronics and Communications Conference.

[13]  Christof Schulz,et al.  Investigation of the kinetics of OH∗ and CH∗ chemiluminescence in hydrocarbon oxidation behind reflected shock waves , 2012 .

[14]  A. Dogariu,et al.  Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures , 2010 .

[15]  J. Boeuf,et al.  Modelling of a nanosecond surface discharge actuator , 2009 .

[16]  G. Dearden,et al.  A comparative study of optical fibre types for application in a laser-induced ignition system , 2009 .

[17]  K. Mahesh,et al.  Numerical Simulation of Laser Induced Breakdown in Air , 2007 .

[18]  Almantas Galvanauskas,et al.  Use of hollow core fibers, fiber lasers, and photonic crystal fibers for spark delivery and laser ignition in gases. , 2007, Applied optics.

[19]  D. Lacoste,et al.  Ignition of Propane–Air Mixtures by a Repetitively Pulsed Nanosecond Discharge , 2006, IEEE Transactions on Plasma Science.

[20]  B. Bihari,et al.  Ignition Characteristics of Methane-Air Mixtures at Elevated Temperatures and Pressures , 2005 .

[21]  Derek Bradley,et al.  Fundamentals of high-energy spark ignition with lasers , 2004 .

[22]  Yuji Ikeda,et al.  Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark , 2003 .

[23]  Reinhard Noll,et al.  Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses , 1995 .

[24]  V. Srivastava,et al.  Pressure dependence of the laser-induced breakdown thresholds of gases and droplets. , 1990, Applied optics.

[25]  R. Chang,et al.  Internal and external laser-induced avalanche breakdown of single droplets in an argon atmosphere , 1987 .

[26]  Iu. P. Raizer,et al.  Laser Induced Discharge Phenomena , 1979 .

[27]  C. G. Morgan Laser-induced breakdown of gases , 1975 .

[28]  S. Im,et al.  Dual-pulse laser-induced spark ignition and flame propagation of a methane diffusion jet flame , 2017 .

[29]  A. Marchese,et al.  A study of laser induced ignition of methane–air mixtures inside a Rapid Compression Machine , 2017 .

[30]  Axel Coussement,et al.  A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture , 2017 .

[31]  Harald Kleine,et al.  Laser-induced plasma ignition studies in a model scramjet engine , 2013 .

[32]  Azer P. Yalin,et al.  On Comparative Performance Testing of Prechamber and Open Chamber Laser Ignition , 2010 .

[33]  M. Gautam,et al.  Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug , 2008 .

[34]  Ernst Wintner,et al.  Laser Ignition: A New Concept to Use and Increase the Potentials of Gas Engines , 2005 .

[35]  Sreenath B. Gupta,et al.  Development of Advanced Laser Ignition System for Stationary Natural Gas Reciprocating Engines , 2005 .

[36]  G. Elliott,et al.  Temporal and Spatial Evolution of the Thermal Structure of a Laser Spark in Air , 2005 .

[37]  Ernst Wintner,et al.  Laser ignition of engines via optical fibers , 2004 .

[38]  S. H. Chung,et al.  Numerical simulation of front lobe formation in laser-induced spark ignition of CH4/air mixtures , 2002 .

[39]  T. Phuoc,et al.  An optical and spectroscopic study of laser-induced sparks to determine available ignition energy , 2002 .

[40]  Tatsuro Tsukamoto,et al.  Mechanism of flame kernel formation produced by short duration sparks , 1988 .

[41]  M. Metghalchi,et al.  Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature , 1982 .

[42]  George Bekefi,et al.  Principles of laser plasmas , 1976 .