Epidemic Spreading With External Agents

We study epidemic spreading processes in large networks, when the spread is assisted by a small number of external agents: infection sources with bounded spreading power, but whose movement is unrestricted vis-à-vis the underlying network topology. For networks, which are spatially constrained, we show that the spread of infection can be significantly speeded up even by a few such external agents infecting randomly. Moreover, for general networks, we derive upper bounds on the order of the spreading time achieved by certain simple (random/greedy) external-spreading policies. Conversely, for certain common classes of networks such as line graphs, grids, and random geometric graphs, we also derive lower bounds on the order of the spreading time over all (potentially network-state aware and adversarial) external-spreading policies; these adversarial lower bounds match (up to logarithmic factors) the spreading time achieved by an external agent with a random spreading policy. This demonstrates that random, state-oblivious infection-spreading by an external agent is in fact order-wise optimal for spreading in such spatially constrained networks.

[1]  Jon M. Kleinberg,et al.  The structure of information pathways in a social communication network , 2008, KDD.

[2]  Devavrat Shah,et al.  Gossip Algorithms , 2009, Found. Trends Netw..

[3]  Charles U. Martel,et al.  Analyzing Kleinberg's (and other) small-world Models , 2004, PODC '04.

[4]  Stefan Saroiu,et al.  A preliminary investigation of worm infections in a bluetooth environment , 2006, WORM '06.

[5]  Eitan Altman,et al.  Maximum Damage Malware Attack in Mobile Wireless Networks , 2010, 2010 Proceedings IEEE INFOCOM.

[6]  Alessandro Vespignani,et al.  Multiscale mobility networks and the spatial spreading of infectious diseases , 2009, Proceedings of the National Academy of Sciences.

[7]  R. Durrett Random Graph Dynamics: References , 2006 .

[8]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[9]  B. Pittel On spreading a rumor , 1987 .

[10]  Harry Kesten,et al.  First-Passage Percolation , 2003 .

[11]  Lawrence M Wein,et al.  Analyzing bioterror response logistics: the case of smallpox. , 2003, Mathematical biosciences.

[12]  E. Rogers,et al.  Diffusion of innovations , 1964, Encyclopedia of Sport Management.

[13]  V. Anantharam,et al.  Designing a contact process: the piecewise-homogeneous process on a finite set with applications , 2005 .

[14]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[15]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[16]  Brian D. Noble,et al.  Modeling epidemic spreading in mobile environments , 2005, WiSe '05.

[17]  S. Riley Large-Scale Spatial-Transmission Models of Infectious Disease , 2007, Science.

[18]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[19]  Aditya Gopalan,et al.  Random mobility and the spread of infection , 2011, 2011 Proceedings IEEE INFOCOM.

[20]  Eitan Altman,et al.  Optimal control of epidemic evolution , 2011, 2011 Proceedings IEEE INFOCOM.

[21]  Jon M. Kleinberg,et al.  Spatial gossip and resource location protocols , 2004, J. ACM.

[22]  Amin Saberi,et al.  How to distribute antidote to control epidemics , 2010 .

[23]  Alexandros G. Dimakis,et al.  The Impact of Mobility on Gossip Algorithms , 2012, IEEE Transactions on Information Theory.

[24]  Marc Lelarge,et al.  Efficient control of epidemics over random networks , 2009, SIGMETRICS '09.

[25]  Donald F. Towsley,et al.  The effect of network topology on the spread of epidemics , 2005, Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies..

[26]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[27]  J. Kleinberg Computing: the wireless epidemic. , 2007, Nature.

[28]  F. Ball,et al.  Epidemics with two levels of mixing , 1997 .

[29]  E. Rogers,et al.  Diffusion of Innovations, 5th Edition , 2003 .

[30]  Frank Ball,et al.  Stochastic multitype epidemics in a community of households: Estimation of threshold parameter R* and secure vaccination coverage , 2004 .

[31]  Remco van der Hofstad,et al.  Universality for first passage percolation on sparse random graphs , 2012, 1210.6839.

[32]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[33]  Jeffrey O. Kephart,et al.  Directed-graph epidemiological models of computer viruses , 1991, Proceedings. 1991 IEEE Computer Society Symposium on Research in Security and Privacy.

[34]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[35]  Laurent Massoulié,et al.  Epidemics and Rumours in Complex Networks: Index , 2009 .

[36]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[37]  Songwu Lu,et al.  SmartSiren: virus detection and alert for smartphones , 2007, MobiSys '07.

[38]  H. Kesten On the Speed of Convergence in First-Passage Percolation , 1993 .

[39]  Alessandro Vespignani,et al.  Epidemic dynamics in finite size scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Kazuyuki Aihara,et al.  Immunization of Geographical Networks , 2009, Complex.

[41]  Amin Saberi,et al.  How to distribute antidote to control epidemics , 2010, Random Struct. Algorithms.

[42]  Noga Alon Transmitting in the n-Dimensional Cube , 1992, Discret. Appl. Math..

[43]  Albert-László Barabási,et al.  Understanding the Spreading Patterns of Mobile Phone Viruses , 2009, Science.

[44]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Jon M. Kleinberg,et al.  Spatial gossip and resource location protocols , 2001, JACM.

[46]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[47]  R. Durrett,et al.  The Contact Process on a Finite Set. II , 1988 .

[48]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .