PRECONDITIONING VIA GMRES IN POLYNOMIAL SPACE ∗

We propose a class of polynomial preconditioners for solving non-Hermitian linear 3 systems obtained from a least-squares approximation in polynomial space instead of a standard 4 Krylov subspace. The process for building the polynomial relies on an Arnoldi-like procedure in a 5 small dimensional polynomial space and is equivalent to performing GMRES in polynomial space. 6 It is inexpensive and produces results with superior numerical stability. A few improvements to 7 the basic scheme are discussed including the development of a short-term recurrence and the use of 8 compounded preconditioners. Numerical experiments, including a test with challenging 3D Helmholtz 9 equations and a few publicly available sparse matrices, are provided to demonstrate the performance 10 of the proposed preconditioners. 11

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Y. Saad,et al.  Solving the 3D High-Frequency Helmholtz Equation using Contour Integration and Polynomial Preconditioning , 2018, 1811.12378.

[3]  Yousef Saad,et al.  A Hierarchical Low Rank Schur Complement Preconditioner for Indefinite Linear Systems , 2018, SIAM J. Sci. Comput..

[4]  Ronald B. Morgan,et al.  Polynomial Preconditioned Arnoldi , 2018, 1806.08020.

[5]  Yousef Saad,et al.  A Rational Function Preconditioner For Indefinite Sparse Linear Systems , 2017, SIAM J. Sci. Comput..

[6]  M. Crouzeix,et al.  The numerical range as a spectral set , 2017, 1702.00668.

[7]  Yousef Saad,et al.  An Algebraic Multilevel Preconditioner with Low-Rank Corrections for Sparse Symmetric Matrices , 2016, SIAM J. Matrix Anal. Appl..

[8]  Yousef Saad,et al.  Schur complement‐based domain decomposition preconditioners with low‐rank corrections , 2015, Numer. Linear Algebra Appl..

[9]  Yousef Saad,et al.  Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..

[10]  Yousef Saad,et al.  GPU-accelerated preconditioned iterative linear solvers , 2013, The Journal of Supercomputing.

[11]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[12]  Michael Garland,et al.  Implementing sparse matrix-vector multiplication on throughput-oriented processors , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[13]  L. Trefethen,et al.  Barycentric-Remez algorithms for best polynomial approximation in the chebfun system , 2009 .

[14]  Rajesh Bordawekar,et al.  Optimizing Sparse Matrix-Vector Multiplication on GPUs using Compile-time and Run-time Strategies , 2008 .

[15]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[16]  H. Thornquist Fixed-Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem , 2006 .

[17]  M. Crouzeix Bounds for Analytical Functions of Matrices , 2004 .

[18]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[19]  Martin H. Gutknecht,et al.  The Chebyshev iteration revisited , 2002, Parallel Comput..

[20]  Thomas A. Manteuffel,et al.  On hybrid iterative methods for nonsymmetric systems of linear equations , 1996 .

[21]  Lucas M. Venter,et al.  A Two-Phase Algorithm for the Chebyshev Solution of Complex Linear Equations , 1994, SIAM J. Sci. Comput..

[22]  Lloyd N. Trefethen,et al.  A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..

[23]  G. Watson A Method for the Chebyshev Solution of an Overdetermined System of Complex Linear Equations , 1988 .

[24]  P. Tang A fast algorithm for linear complex Chebyshev approximations , 1988 .

[25]  John P. Coleman,et al.  Polynomial approximations in the complex plane , 1987 .

[26]  Y. Saad Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .

[27]  Y. Saad,et al.  A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations , 1986 .

[28]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[29]  R. Streit Solution of systems of complex linear equations in the l ∞ 0E norm with constraints on the unknowns , 1986 .

[30]  Albert H. Nuttall,et al.  A Note on the Semi-Infinite Programming Approach to Complex Approximation , 1983 .

[31]  S. Lang Complex Analysis , 1977 .

[32]  E. Cheney Introduction to approximation theory , 1966 .

[33]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[34]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[35]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .