PRECONDITIONING VIA GMRES IN POLYNOMIAL SPACE ∗
暂无分享,去创建一个
Y. Saad | Yuanzhe Xi | XI Yuanzhe | YE Xin
[1] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[2] Y. Saad,et al. Solving the 3D High-Frequency Helmholtz Equation using Contour Integration and Polynomial Preconditioning , 2018, 1811.12378.
[3] Yousef Saad,et al. A Hierarchical Low Rank Schur Complement Preconditioner for Indefinite Linear Systems , 2018, SIAM J. Sci. Comput..
[4] Ronald B. Morgan,et al. Polynomial Preconditioned Arnoldi , 2018, 1806.08020.
[5] Yousef Saad,et al. A Rational Function Preconditioner For Indefinite Sparse Linear Systems , 2017, SIAM J. Sci. Comput..
[6] M. Crouzeix,et al. The numerical range as a spectral set , 2017, 1702.00668.
[7] Yousef Saad,et al. An Algebraic Multilevel Preconditioner with Low-Rank Corrections for Sparse Symmetric Matrices , 2016, SIAM J. Matrix Anal. Appl..
[8] Yousef Saad,et al. Schur complement‐based domain decomposition preconditioners with low‐rank corrections , 2015, Numer. Linear Algebra Appl..
[9] Yousef Saad,et al. Divide and Conquer Low-Rank Preconditioners for Symmetric Matrices , 2013, SIAM J. Sci. Comput..
[10] Yousef Saad,et al. GPU-accelerated preconditioned iterative linear solvers , 2013, The Journal of Supercomputing.
[11] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[12] Michael Garland,et al. Implementing sparse matrix-vector multiplication on throughput-oriented processors , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[13] L. Trefethen,et al. Barycentric-Remez algorithms for best polynomial approximation in the chebfun system , 2009 .
[14] Rajesh Bordawekar,et al. Optimizing Sparse Matrix-Vector Multiplication on GPUs using Compile-time and Run-time Strategies , 2008 .
[15] Michel Crouzeix,et al. Numerical range and functional calculus in Hilbert space , 2007 .
[16] H. Thornquist. Fixed-Polynomial Approximate Spectral Transformations for Preconditioning the Eigenvalue Problem , 2006 .
[17] M. Crouzeix. Bounds for Analytical Functions of Matrices , 2004 .
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] Martin H. Gutknecht,et al. The Chebyshev iteration revisited , 2002, Parallel Comput..
[20] Thomas A. Manteuffel,et al. On hybrid iterative methods for nonsymmetric systems of linear equations , 1996 .
[21] Lucas M. Venter,et al. A Two-Phase Algorithm for the Chebyshev Solution of Complex Linear Equations , 1994, SIAM J. Sci. Comput..
[22] Lloyd N. Trefethen,et al. A Hybrid GMRES Algorithm for Nonsymmetric Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[23] G. Watson. A Method for the Chebyshev Solution of an Overdetermined System of Complex Linear Equations , 1988 .
[24] P. Tang. A fast algorithm for linear complex Chebyshev approximations , 1988 .
[25] John P. Coleman,et al. Polynomial approximations in the complex plane , 1987 .
[26] Y. Saad. Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems , 1987 .
[27] Y. Saad,et al. A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations , 1986 .
[28] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[29] R. Streit. Solution of systems of complex linear equations in the l ∞ 0E norm with constraints on the unknowns , 1986 .
[30] Albert H. Nuttall,et al. A Note on the Semi-Infinite Programming Approach to Complex Approximation , 1983 .
[31] S. Lang. Complex Analysis , 1977 .
[32] E. Cheney. Introduction to approximation theory , 1966 .
[33] R. Varga,et al. Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .
[34] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[35] C. Lanczos,et al. Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .