Applications of Microfluidic Devices in Food Engineering

[1]  J. Aguilera,et al.  Formation of bubbles and foams in gelatine solutions within a vertical glass tube , 2008 .

[2]  Kensall D. Wise,et al.  Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage , 2007 .

[3]  T. Higuchi,et al.  Nano-liter size droplet dispenser using electrostatic manipulation technique , 2007 .

[4]  Matthew B. Kerby,et al.  Measurements of kinetic parameters in a microfluidic reactor. , 2006, Analytical chemistry.

[5]  G. Hähner,et al.  Simultaneous determination of density and viscosity of liquids based on resonance curves of uncalibrated microcantilevers , 2006 .

[6]  Nobuyasu Yamaguchi,et al.  Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system. , 2006, Journal of microbiological methods.

[7]  N. Jeon,et al.  Microfluidic culture platform for neuroscience research , 2006, Nature Protocols.

[8]  Chih-Ming Ho,et al.  Two-phase flow in microchannels with surface modifications , 2006 .

[9]  J. Gardner,et al.  Taste sensors utilizing high-frequency SH-SAW devices , 2006 .

[10]  Rashid Bashir,et al.  Performance evaluation of a low conductive growth medium (LCGM) for growth of healthy and stressed Listeria monocytogenes and other common bacterial species. , 2006, International journal of food microbiology.

[11]  B. W. Webb,et al.  Characterization of transition to turbulence in microchannels , 2006 .

[12]  H. Craighead Future lab-on-a-chip technologies for interrogating individual molecules , 2006, Nature.

[13]  Kristen L. Helton,et al.  Microfluidic diagnostic technologies for global public health , 2006, Nature.

[14]  K. Jensen,et al.  Cells on chips , 2006, Nature.

[15]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[16]  Richard A Mathies,et al.  Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Chudy,et al.  Self-regulating heater for microfluidic reactors , 2006 .

[18]  Remko M. Boom,et al.  Visualization of droplet break-up in pre-mix membrane emulsification using microfluidic devices , 2006 .

[19]  S. Flint,et al.  A rapid, two-hour method for the enumeration of total viable bacteria in samples from commercial milk powder and whey protein concentrate powder manufacturing plants , 2006 .

[20]  R. Boom,et al.  Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[21]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[22]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[23]  Y. Zhu,et al.  Thermal modeling of a microheater in a microchannel chip , 2005, SPIE Micro + Nano Materials, Devices, and Applications.

[24]  Albert Folch,et al.  Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. , 2005, Lab on a chip.

[25]  Thomas M Pearce,et al.  Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. , 2005, Lab on a chip.

[26]  Neil M. White,et al.  Fluid modelling of microfluidic separator channels , 2005 .

[27]  Robert T Kennedy,et al.  Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters. , 2005, Analytical chemistry.

[28]  Ce Wang,et al.  Fabrication of PbS Nanoparticles in Polymer‐Fiber Matrices by Electrospinning , 2005 .

[29]  Chang-Hwan Kim,et al.  Two‐Polymer Microtransfer Molding for Highly Layered Microstructures , 2005 .

[30]  Brian N. Johnson,et al.  An integrated microfluidic device for influenza and other genetic analyses. , 2005, Lab on a chip.

[31]  T. Norris,et al.  Quantitative Two-photon Flow Cytometry , 2005, 2005 Quantum Electronics and Laser Science Conference.

[32]  David Erickson,et al.  Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices , 2005 .

[33]  A Paul Alivisatos,et al.  High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. , 2005, Journal of the American Chemical Society.

[34]  N. Scott,et al.  Nanotechnology and animal health. , 2005, Revue scientifique et technique.

[35]  José Miguel Aguilera,et al.  Why food microstructure , 2005 .

[36]  N. Nguyen,et al.  Micromixers—a review , 2005 .

[37]  R. Chambers,et al.  Elemental fluorine. Part 16. Versatile thin-film gas-liquid multi-channel microreactors for effective scale-out. , 2005, Lab on a chip.

[38]  Mitsutoshi Nakajima,et al.  The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device , 2004 .

[39]  Toru Torii,et al.  Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[40]  Erich J. Windhab,et al.  Drop formation in a co-flowing ambient fluid , 2004 .

[41]  David A. Weitz,et al.  A new device for the generation of microbubbles , 2004 .

[42]  J R Scherer,et al.  Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. , 2004, Analytical chemistry.

[43]  R. Ismagilov,et al.  Effects of viscosity on droplet formation and mixing in microfluidic channels , 2004 .

[44]  D. Beebe,et al.  Cell infection within a microfluidic device using virus gradients , 2004 .

[45]  K. Kurabayashi,et al.  PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes , 2004 .

[46]  Robin H. Liu,et al.  Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. , 2004, Analytical chemistry.

[47]  Alfonso M Gañán-Calvo,et al.  Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  A. Hermansson,et al.  Formation of shaped drops in a fast continuous flow process. , 2004, Journal of colloid and interface science.

[49]  P. Tabeling,et al.  Spatiotemporal resonances in mixing of open viscous fluids. , 2004, Physical review letters.

[50]  Zhao-Lun Fang,et al.  Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. , 2004, Lab on a chip.

[51]  Martin E. Leser,et al.  ‘Food goes nano’– New horizons for food structure research , 2003 .

[52]  D. Weitz,et al.  Geometrically mediated breakup of drops in microfluidic devices. , 2003, Physical review letters.

[53]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[54]  D. Veal,et al.  Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. , 2003, International journal of food microbiology.

[55]  Helen Song,et al.  Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers , 2003 .

[56]  Teruo Fujii,et al.  A plug and play microfluidic device. , 2003, Lab on a chip.

[57]  Patrick Tabeling,et al.  Ordered and disordered patterns in two-phase flows in microchannels. , 2003, Physical review letters.

[58]  Yi-Kuen Lee,et al.  Efficient spatial-temporal chaotic mixing in microchannels , 2003 .

[59]  T. Higuchi,et al.  Rapid preparation of monodispersed droplets with confluent laminar flows , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[60]  T C Lubensky,et al.  Rheological microscopy: local mechanical properties from microrheology. , 2003, Physical review letters.

[61]  J. Lahann,et al.  A Reversibly Switching Surface , 2003, Science.

[62]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[63]  Thomas Lippert,et al.  Chemical and spectroscopic aspects of polymer ablation: special features and novel directions. , 2003, Chemical reviews.

[64]  Chih-Ming Ho,et al.  Transport of bubbles in square microchannels , 2002 .

[65]  J. Genzer,et al.  Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. , 2002, Journal of colloid and interface science.

[66]  Liqing Ren,et al.  Theoretical studies of microfluidic dispensing processes. , 2002, Journal of colloid and interface science.

[67]  Pieter Walstra,et al.  Physical chemistry of foods , 2002 .

[68]  Stephen R Quake,et al.  Velocity‐independent microfluidic flow cytometry , 2002, Electrophoresis.

[69]  J. Josserand,et al.  Mixing processes in a zigzag microchannel: finite element simulations and optical study. , 2002, Analytical chemistry.

[70]  Ralf Lenigk,et al.  Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray. , 2002, Analytical chemistry.

[71]  Minoru Seki,et al.  Effect of Channel Structure on Microchannel Emulsification , 2002 .

[72]  Nam-Trung Nguyen,et al.  MEMS-Micropumps: A Review , 2002 .

[73]  H. Mao,et al.  A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements. , 2002, Journal of the American Chemical Society.

[74]  Tibor Chován,et al.  Microfabricated devices in biotechnology and biochemical processing. , 2002, Trends in biotechnology.

[75]  T. Higuchi,et al.  Droplet formation in a microchannel network. , 2002, Lab on a chip.

[76]  I. Mezić,et al.  Chaotic Mixer for Microchannels , 2002, Science.

[77]  A. Gañán-Calvo,et al.  Perfectly monodisperse microbubbling by capillary flow focusing. , 2001, Physical review letters.

[78]  Helen C. Parkes,et al.  Evaluation of LabChipTM technology for GMO analysis in food , 2001 .

[79]  Michel Wautelet,et al.  Scaling laws in the macro-, micro- and nanoworlds , 2001 .

[80]  Gun Trägårdh,et al.  Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification , 2001 .

[81]  Minoru Seki,et al.  Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array , 2001 .

[82]  M. Nakajima,et al.  Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification , 2001 .

[83]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[84]  P. Yager,et al.  Optical measurement of transverse molecular diffusion in a microchannel. , 2001, Biophysical journal.

[85]  Asterios Gavriilidis,et al.  Mixing characteristics of T-type microfluidic mixers , 2001 .

[86]  D. Cunningham,et al.  Fluidics and sample handling in clinical chemical analysis , 2001 .

[87]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[88]  R. Jonker,et al.  Flow cytometry as a tool for the study of phytoplankton , 2000 .

[89]  C. Cabrera,et al.  Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing , 2000, Analytical chemistry.

[90]  D. Figeys,et al.  Lab-on-a-chip: a revolution in biological and medical sciences , 2000, Analytical chemistry.

[91]  G. Bratbak,et al.  Flow cytometric detection of viruses. , 2000, Journal of virological methods.

[92]  Thusitha S. Gunasekera,et al.  A Flow Cytometry Method for Rapid Detection and Enumeration of Total Bacteria in Milk , 2000, Applied and Environmental Microbiology.

[93]  Grant M. Campbell,et al.  Creation and characterisation of aerated food products , 1999 .

[94]  R. Austin,et al.  Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds , 1998 .

[95]  George M. Whitesides,et al.  Solvent‐assisted microcontact molding: A convenient method for fabricating three‐dimensional structures on surfaces of polymers , 1997 .

[96]  J. Rossier,et al.  UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems. , 1997, Analytical chemistry.

[97]  G. Whitesides,et al.  Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field , 1997 .

[98]  George M. Whitesides,et al.  Replica molding using polymeric materials: A practical step toward nanomanufacturing , 1997 .

[99]  G. Whitesides,et al.  Fabrication of three‐dimensional micro‐structures: Microtransfer molding , 1996 .

[100]  George M. Whitesides,et al.  Micromolding in Capillaries: Applications in Materials Science , 1996 .

[101]  L. Bousse Whole Cell Biosensors , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[102]  H. Schubert,et al.  Developments in the continuous mechanical production of oil-in-water macro-emulsions , 1995 .

[103]  K. Kendall,et al.  Adhesion: Molecules and Mechanics , 1994, Science.

[104]  P C Vasavada,et al.  Rapid methods and automation in dairy microbiology. , 1993, Journal of dairy science.

[105]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[106]  R. Srinivasan Ablation of polyimide (Kapton™) films by pulsed (ns) ultraviolet and infrared (9.17 μm) lasers , 1993 .

[107]  Chihshan Li,et al.  Real-time monitoring for bioaerosols--flow cytometry. , 2007, The Analyst.

[108]  Noo Li Jeon,et al.  Microfluidic chambers for cell migration and neuroscience research. , 2006, Methods in molecular biology.

[109]  Stephen R. Quake,et al.  Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat , 2005, Science.

[110]  Man Bock Gu,et al.  Whole-cell-based biosensors for environmental biomonitoring and application. , 2004, Advances in biochemical engineering/biotechnology.

[111]  Chih-Ming Ho,et al.  Reconfigurable hydrophobic/hydrophilic surfaces in microelectromechanical systems (MEMS) , 2004 .

[112]  Charles P. Lin,et al.  In vivo flow cytometer for real-time detection and quantification of circulating cells. , 2004, Optics letters.

[113]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[114]  Helmar Schubert,et al.  Product engineering of dispersed systems , 2003 .

[115]  David J. Beebe,et al.  Evaluation of a Three-Dimensional Micromixer in a Surface-Based Biosensor† , 2003 .

[116]  T. Higuchi,et al.  Preparation of Picoliter-Sized Reaction / Analysis Chambers for Droplet-Based Chemical and Biochemical Systems , 2002 .

[117]  A J de Mello,et al.  Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. , 2001, The Analyst.

[118]  A. Pisano,et al.  Characterization of a Micro-Mixing, Pumping, and Valving System , 2001 .

[119]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[120]  P. Gennes The Physics Of Foams , 1999 .

[121]  José Miguel Aguilera,et al.  Microstructural principles of food processing and engineering , 1999 .

[122]  P. Lindahl,et al.  ASSEMBLY OF AN EXCHANGE-COUPLED NI:FE4S4 CLUSTER IN THE ALPHA METALLOSUBUNIT OF CARBON MONOXIDE DEHYDROGENASE FROM CLOSTRIDIUM THERMOACETICUM WITH SP ECTROSCOPIC PROPERTIES AND CO-BINDING ABILITY MIMICKING THOSE OF THE ACETYL -COA SYNTHASE ACTIVE SITE , 1996 .