Gaussian statistics for palaeomagnetic vectors

SUMMARY With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh–Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Reunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

[1]  R. Doell Paleosecular variation of the Honolulu Volcanic Series, Oahu, Hawaii , 1972 .

[2]  D. Champion,et al.  Latest Pleistocene and Holocene Geomagnetic Paleointensity on Hawaii , 1993, Science.

[3]  Lisa Tauxe,et al.  Paleomagnetic principles and practice , 1998 .

[4]  Vincent Courtillot,et al.  How complex is the time-averaged geomagnetic field over the past 5 Myr? , 1998 .

[5]  R. Parker,et al.  Analysis of 11 Myr of geomagnetic intensity variation , 1998 .

[6]  A. Reid,et al.  Analysis of palaeomagnetic inclination data , 1982 .

[7]  R. Doell,et al.  Long period variations of the geomagnetic field , 1964 .

[8]  D. Yuen Chaotic processes in the geological sciences , 1992 .

[9]  J. Love,et al.  Paleointensity in Hawaiian Scientific Drilling Project Hole (HSDP2): Results from submarine basaltic glass , 2003 .

[10]  C. Laj,et al.  Geomagnetic paleosecular variation at Hawaii around 3 Ma from a sequence of 107 lava flows at Kaena Point (Oahu) , 1999 .

[11]  G. S. Watson,et al.  STATISTICAL METHODS IN ROCK MAGNETISM , 1957 .

[12]  R. Doell,et al.  Paleomagnetism of Hawaiian Lava Fows , 1965 .

[13]  R. Doell Paleomagnetism of lava flows from Kauai, Hawaii , 1972 .

[14]  E. Dormy,et al.  Numerical models of the geodynamo and observational constraints , 2000 .

[15]  E. Herrero-Bervera,et al.  Paleosecular variation during sequential geomagnetic reversals from Hawaii , 1999 .

[16]  Jeremy Bloxham,et al.  Time‐dependent mapping of the magnetic field at the core‐mantle boundary , 1992 .

[17]  K. B. Oldham,et al.  An Atlas of Functions. , 1988 .

[18]  R. Coe,et al.  Geomagnetic paleointensities from excursion sequences in lavas on Oahu, Hawaii , 1984 .

[19]  N. Watkins Brunhes epoch geomagnetic secular variation on Reunion Island , 1973 .

[20]  Robert N. McDonough,et al.  Detection of signals in noise , 1971 .

[21]  C. Laj,et al.  Geomagnetic field intensity at Hawaii for the last 420 kyr from the Hawaii Scientific Drilling Project core, Big Island, Hawaii , 1999 .

[22]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Jeremy Bloxham,et al.  Geomagnetic secular variation , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[24]  N. Watkins,et al.  Geomagnetic Secular Variation During the Brunhes Epoch in the Indian and Atlantic Ocean Regions , 1972 .

[25]  G. B. Dalrymple,et al.  Potassium-Argon Ages and Paleomagnetism of the Waianae and Koolau Volcanic Series, Oahu, Hawaii , 1973 .

[26]  R. Holcomb,et al.  Kilauea Volcano, Hawaii : chronology and morphology of the surficial lava flow , 1981 .

[27]  John G. Proakis,et al.  Digital Communications , 1983 .

[28]  J. Lockwood,et al.  ABSOLUTE PALEOINTENSITY FROM HAWAIIAN LAVAS YOUNGER THAN 35 KA , 1998 .

[29]  Masaru Kono,et al.  Dynamo simulation and palaeosecular variation models , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  M. Kono Paleosecular Variation in Field Directions Due to Randomly Varying Gauss Coefficients. , 1997 .

[31]  I. Mcdougall,et al.  Isotopic Dating and Geomagnetic Polarity Studies on Volcanic Rocks from Mauritius, Indian Ocean , 1969 .

[32]  D. Champion,et al.  Broad Trends in Geomagnetic Paleointensity on Hawaii During Holocene Time , 1993 .

[33]  Michael W. McElhinny,et al.  Palaeosecular variation over the past 5 Myr based on a new generalized database , 1997 .

[34]  D. Gubbins,et al.  The geomagnetic field over the past 5 million years , 1997 .

[35]  D. Stevenson,et al.  Evidence for long-term asymmetries in the Earth's magnetic field and possible implications for dynamo theories , 1979 .

[36]  E. M. Lifshitz,et al.  Statistical physics. Pt.1, Pt.2 , 1980 .

[37]  Vincent Courtillot,et al.  On low-degree spherical harmonic models of paleosecular variation , 1996 .

[38]  D. Gubbins,et al.  Symmetry properties of the dynamo equations for palaeomagnetism and geomagnetism , 1993 .

[39]  N. Hofreiter,et al.  Zweiter Teil Bestimmte Integrale , 1958 .

[40]  K. Creer Computer synthesis of geomagnetic palaeosecular variations , 1983, Nature.

[41]  Roger Andriamirado Recherches paléomagnétiques sur Madagascar : résultats et interprétations dans le cadre de la dislocation de la partie orientale du Gondwana , 1971 .

[42]  L. Brown,et al.  Shallow paleomagnetic directions from historic lava flows, Hawaii , 1987 .

[43]  J. Shaw,et al.  Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave palaeointensity technique , 2000 .

[44]  R. Wilson Permanent Aspects of the Earth's Non‐dipole Magnetic Field over Upper Tertiary Times , 1970 .

[45]  R. Coe,et al.  Transitional field behavior during the Gilbert‐Gauss and Lower Mammoth reversals recorded in lavas from the Wai'anae volcano, O'ahu, Hawaii , 1999 .

[46]  Gauthier Hulot,et al.  A statistical approach to the Earth's main magnetic field , 1994 .

[47]  G. S. Watson,et al.  Equatorial distributions on a sphere , 1965 .

[48]  N. Hofreiter,et al.  Integraltafel, Erster Teil: Unbestimmte Integrale. , 1950 .

[49]  David J. Dunlop,et al.  Rock Magnetism: Fundamentals and Frontiers , 1997 .

[50]  Catherine Constable,et al.  Statistics of the geomagnetic secular variation for the past 5 m.y. , 1988 .

[51]  R. Coe,et al.  Transitional paleointensities from Kauai, Hawaii, and geomagnetic reversal models , 1984 .

[52]  Francis Weston Sears,et al.  An Introduction to Thermodynamics, the Kinetic Theory of Gases, and Statistical Mechanics , 1953 .

[53]  Gauthier Hulot,et al.  Long‐term geometry of the geomagnetic field for the last five million years: An updated secular variation database , 1994 .

[54]  Paul H. Roberts,et al.  Magnetohydrodynamics of the Earth's Core , 1972 .

[55]  L. Néel Some theoretical aspects of rock-magnetism , 1955 .

[56]  S. Rowland,et al.  A paleomagnetic study of the Pohue Bay flow and its associated coastal cones, Mauna Loa volcano, Hawaii: constraints on their origin and temporal relationships , 1996 .

[57]  K. S. Miller,et al.  Generalized Rayleigh processes , 1958 .

[58]  A. Cox,et al.  Paleolatitudes Determined From Paleomagnetic Data From Vertical Cores (Paper 3R1307) , 1984 .

[59]  Kanti V. Mardia,et al.  Statistics of Directional Data , 1972 .

[60]  R. Doell,et al.  The accuracy of the paleomagnetic method as evaluated from historic hawaiian lava flows , 1963 .

[61]  F. Chamalaun Paleomagnetism of Réunion Island and its bearing on secular variation , 1968 .

[62]  Pierre Camps,et al.  Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals , 1993, Nature.

[63]  P. L. McFadden,et al.  Determination of the angle in a Fisher distribution which will be exceeded with a given probability , 1980 .

[64]  J. Valet,et al.  Paleomagnetic study of the ages of lavas on the island of Lanai'i, Hawai'i , 2000 .

[65]  J. Kirschvink,et al.  Geomagnetic field inclinations for the past 400 kyr from the 1‐km core of the Hawaii Scientific Drilling Project , 1996 .

[66]  R. Coe,et al.  Geomagnetic paleointensities from radiocarbon‐dated lava flows on Hawaii and the question of the Pacific nondipole low , 1978 .

[67]  M. McElhinny,et al.  Comparison between the Thelliers' and Shaw's palaeointensity methods using basalts less than 5 million years old. , 1982 .

[68]  Masaru Kono,et al.  Some global features of palaeointensity in geological time , 1995 .

[69]  M. McElhinny,et al.  Variations in the Geomagnetic Dipole 2: Statistical Analysis of VDMs for the Past 5 Million Years , 1982 .

[70]  R. Doell Paleomagnetism of the Kau Volcanic Series, Hawaii , 1969 .

[71]  William H. Press,et al.  Numerical recipes , 1990 .

[72]  M. Fuller,et al.  Paleointensity Determinations with Measurements at High Temperature , 1995 .

[73]  P. Gillot,et al.  Paleointensity of the Earth's magnetic field recorded by two Late Quaternary volcanic sequences at the Island of La Réunion (Indian Ocean) , 1991 .

[74]  F. Busse RECENT DEVELOPMENTS IN THE DYNAMO THEORY OF PLANETARY MAGNETISM , 1983 .

[75]  E. Irving,et al.  Palaeomagnetism of the Great Whin Sill , 1959 .

[76]  Gauthier Hulot,et al.  Towards a self-consistent approach to palaeomagnetic field modelling , 2001 .

[77]  Hidefumi Tanaka,et al.  Circular asymmetry of the paleomagnetic directions observed at low latitude volcanic sites , 1999 .

[78]  J. Shaw,et al.  The Shaw method of palaeointensity determinations and its application to recent volcanic rocks , 1994 .

[79]  J. Beer,et al.  Geomagnetic intensity and inclination variations at Hawaii for the past 98 kyr from core SOH-4 (Big Island): a new study and a comparison with existing contemporary data , 2002 .

[80]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[81]  M. Kono,et al.  Preliminary Results and Reliability of Palaeointensity Studies on Historical and 14C Dated Hawaiian Lavas , 1991 .

[82]  C. Laj,et al.  Geomagnetic paleointensities at Hawaii between 3.9 and 2.1 Ma: preliminary results , 2000 .

[83]  Michael W. McElhinny,et al.  The time-averaged paleomagnetic field 0–5 Ma , 1996 .

[84]  I. Mcdougall,et al.  Age and duration of the réunion geomagnetic polarity event , 1973 .

[85]  Subir K. Banerjee,et al.  The physical principles of rock magnetism , 1974 .

[86]  R. Doell Paleomagnetism of volcanic rocks from Niihau, Nihoa, and Necker Islands, Hawaii , 1972 .

[87]  S. González,et al.  Variation of Rock Magnetic Parameters and Paleointensities over a Single Holocene Lava Flow , 1997 .

[88]  J. Hagstrum,et al.  Paleomagnetic correlation of Late Quaternary lava flows in the lower east rift zone of Kilauea Volcano, Hawaii , 1994 .

[89]  Lucy Joan Slater,et al.  Generalized hypergeometric functions , 1966 .

[90]  S. Charap,et al.  Physics of magnetism , 1964 .

[91]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[92]  C. Laj,et al.  A detailed palaeointensity and inclination record from drill core SOH1 on Hawaii , 2002 .

[93]  Masaru Kono,et al.  Statistics of paleomagnetic inclination data , 1980 .

[94]  H. Tsunakawa Geomagnetic Secular Variation during the Brunhes Epoch Inferred from the Paleomagnetism and the Last 200 Years Geomagnetic Field , 1988 .

[95]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[96]  S. Bogue Geomagnetic field behavior before and after the Kauai reverse-normal polarity transition , 2001 .

[97]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[98]  P. L. Mcfadden,et al.  Paleomagnetism and the Nature of the Geodynamo , 1990, Science.

[99]  Nicholas I. Fisher,et al.  Statistical Analysis of Spherical Data. , 1987 .

[100]  M. Kono,et al.  Influence of partial pressure of oxygen on thermoremanent magnetization of basalts , 1977 .

[101]  P. L. Mcfadden,et al.  History of Earth's magnetic field and possible connections to core‐mantle boundary processes , 1995 .

[102]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[103]  Catherine Constable,et al.  The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr , 1995 .

[104]  S A Bludman,et al.  Theoretical Physics , 1932, Nature.

[105]  H. Cramér Mathematical methods of statistics , 1947 .

[106]  J. Kirschvink,et al.  Paleomagnetic constraints on fault motion in the Hilina Fault System, south flank of Kilauea Volcano, Hawaii , 1999 .

[107]  C. Laj,et al.  Geomagnetic field intensity between 70 000 and 130 000 years B.P. from a volcanic sequence on La Réunion, Indian Ocean , 1996 .

[108]  R. Parker,et al.  A statistical analysis of magnetic fields from some geodynamo simulations , 2001 .

[109]  Jeffrey J. Love,et al.  Paleomagnetic volcanic data and geometric regularity of reversals and excursions , 1998 .

[110]  E. Tric,et al.  Absolute paleointensity between 60 and 400 ka from the Kohala Mountain (Hawaii) , 1997 .

[111]  J. Briden,et al.  Analysis of magnetic inclination in borecores , 1966 .

[112]  Catherine Constable,et al.  Anisotropic paleosecular variation models: implications for geomagnetic field observables , 1999 .