Rigid Dualizing Complexes via Differential Graded Algebras (Survey)

In this article we survey recent results on rigid dualizing complexes over commutative algebras. We begin by recalling what are dualizing complexes. Next we define rigid complexes, and explain their functorial properties. Due to the possible presence of torsion, we must use differential graded algebras in the constructions. We then discuss rigid dualizing complexes. Finally we show how rigid complexes can be used to understand Cohen-Macaulay homomorphisms and relative dualizing sheaves.

[1]  L. Avramov,et al.  Gorenstein algebras and Hochschild cohomology , 2007, 0704.3761.

[2]  James J. Zhang,et al.  Rigid complexes via DG algebras , 2006, math/0603733.

[3]  James J. Zhang,et al.  Rigid Dualizing Complexes Over Commutative Rings , 2006, math/0601654.

[4]  James J. Zhang,et al.  Dualizing complexes and perverse modules over differential algebras , 2003, Compositio Mathematica.

[5]  K. Behrend Differential Graded Schemes I: Perfect Resolving Algebras , 2002, math/0212225.

[6]  James J. Zhang,et al.  Dualizing complexes and perverse sheaves on noncommutative ringed schemes , 2002, math/0211309.

[7]  B. Conrad Grothendieck Duality and Base Change , 2001 .

[8]  Leovigildo Alonso Tarrío,et al.  Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes , 1999 .

[9]  James J. Zhang,et al.  Rings with Auslander Dualizing Complexes , 1998, math/9804005.

[10]  M. Bergh Existence Theorems for Dualizing Complexes over Non-commutative Graded and Filtered Rings , 1997 .

[11]  J. Lipman,et al.  Duality and flat base change on formal schemes , 1997, math/0106239.

[12]  V. Hinich Homological algebra of homotopy algebras , 1997, q-alg/9702015.

[13]  Amnon Neeman,et al.  The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .

[14]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[15]  P. Sastry,et al.  REGULAR DIFFERENTIAL FORMS AND RELATIVE DUALITY , 1993 .

[16]  P. Sastry,et al.  An explicit construction of the Grothendieck residue complex , 1992 .

[17]  E. Kunz,et al.  Regular differential forms and duality for projective morphisms. , 1990 .

[18]  J. Lipman Residues and traces of di erential forms via Hochschild homology , 1987 .

[19]  Steven L. Kleiman,et al.  Introduction to Grothendieck Duality Theory , 1970 .

[20]  R. Hartshorne Residues And Duality , 1966 .