A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations

Using the abstract framework of [9] we analyze a residual a posteriori error estimator for space-time finite element discretizations of quasilinear parabolic pdes. The estimator gives global upper and local lower bounds on the error of the numerical solution. The finite element discretizations in particular cover the so-called θ-scheme, which includes the implicit and explicit Euler methods and the Crank-Nicholson scheme.

[1]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[2]  Rüdiger Verfürth,et al.  A posteriori error estimates for nonlinear problems , 1994 .

[3]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[4]  J. Baranger,et al.  Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens , 1991 .

[5]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[6]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[7]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[8]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[9]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[10]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[11]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[12]  Manfred Körkel,et al.  Discrete facility location with nonlinear facility costs , 1991 .

[13]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[14]  G. Fix Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .

[15]  Rüdiger Verfürth,et al.  Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .