Combinatorial Optimization Over Two Random Point Sets

Let \((\mathcal{X},\mathcal{Y})\) be a pair of random point sets in \({\mathbb{R}}^{d}\) of equal cardinal obtained by sampling independently 2n points from a common probability distribution μ. In this paper, we are interested by functions L of \((\mathcal{X},\mathcal{Y})\) which appear in combinatorial optimization. Typical examples include the minimal length of a matching of \(\mathcal{X}\) and \(\mathcal{Y}\), the length of a traveling salesperson tour constrained to alternate between points of each set, or the minimal length of a connected bipartite r-regular graph with vertex set \((\mathcal{X},\mathcal{Y})\). As the size n of the point sets goes to infinity, we give sufficient conditions on the function L and the probability measure μ which guarantee the convergence of \(L(\mathcal{X},\mathcal{Y})\) under a suitable scaling. In the case of the minimal length matching, we extend results of Dobric and Yukich, and Boutet de Monvel and Martin.

[1]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[3]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[4]  J. Steele Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability , 1981 .

[5]  János Komlós,et al.  On optimal matchings , 1984, Comb..

[6]  J. Steele Probability theory and combinatorial optimization , 1987 .

[7]  Michel Talagrand,et al.  Matching Random Samples in Many Dimensions , 1992 .

[8]  M. Talagrand,et al.  The Integrability of the Square Exponential Transportation Cost , 1993 .

[9]  Wansoo T. Rhee On the Stochastic Euclidean Travelling Salesperson Problem for Distributions with Unbounded Support , 1993, Math. Oper. Res..

[10]  Wansoo T. Rhee A Matching Problem and Subadditive Euclidean Functionals , 1993 .

[11]  J. Yukich,et al.  Limit Theorems and Rates of Convergence for Euclidean Functionals , 1994 .

[12]  J. Yukich,et al.  Asymptotics for transportation cost in high dimensions , 1995 .

[13]  J. Yukich Probability theory of classical Euclidean optimization problems , 1998 .

[14]  S. Rachev,et al.  Mass transportation problems , 1998 .

[15]  J. H. Boutet de Monvel,et al.  Almost Sure Convergence of the Minimum Bipartite Matching Functional in Euclidean Space , 2002, Comb..

[16]  C. Villani Topics in Optimal Transportation , 2003 .

[17]  Robin Pemantle,et al.  Poisson Matching , 2007, 0712.1867.

[18]  A. Holroyd Geometric properties of Poisson matchings , 2009, 0909.0575.

[19]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[20]  Karl-Theodor Sturm,et al.  Optimal transport from Lebesgue to Poisson , 2010, 1012.3845.