Krull--Gabriel dimension of Cohen--Macaulay modules over hypersurfaces of countable Cohen--Macaulay representation type

We calculate the Krull–Gabriel dimension of the functor category of the (stable) category of maximal Cohen–Macaulay modules over hypersurfaces of countable Cohen– Macaulay representation type. We show that the Krull–Gabriel dimension is 0 if the hypersurface is of finite Cohen–Macaulay representation type and that is 2 if the hypersurface is of countable but not finite Cohen–Macaulay representation type.

[1]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[2]  Graham J. Leuschke,et al.  Cohen-Macaulay Representations , 2012 .

[3]  H. Matsui,et al.  Singularity categories and singular equivalences for resolving subcategories , 2014, 1412.8061.

[4]  Ryo Takahashi Classifying subcategories of modules over a commutative noetherian ring , 2008, 0808.0058.

[5]  A. Schofield TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .

[6]  M. Auslander A functorial approach to representation theory , 1982 .

[7]  G. Puninski,et al.  The Ziegler spectrum of the $D$-infinity plane singularity , 2016, Colloquium Mathematicum.

[8]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[9]  Y. Yoshino,et al.  Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .

[10]  G. Puninski The Ziegler Spectrum and Ringel’s Quilt of the A-infinity Plane Curve Singularity , 2018 .

[11]  G. Greuel Singularities, Representation of Algebras, and Vector Bundles , 1987 .

[12]  H. Krause Generic Modules Over Artin Algebras , 1998 .

[13]  Y. Drozd,et al.  Maximal Cohen-Macaulay modules over surface singularities , 2008, 0803.0117.

[14]  Y. Yoshino A functorial approach to modules of G-dimension zero , 2004, math/0408162.

[15]  A. Duncan COHEN‐MACAULAY MODULES OVER COHEN‐MACAULAY RINGS , 1992 .

[16]  J. Schröer On the Krull-Gabriel dimension of an algebra , 2000 .

[17]  Naoya Hiramatsu Relations for Grothendieck groups of Gorenstein rings , 2016, 1604.06530.

[18]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[19]  Ryo Takahashi,et al.  On the structure of Cohen-Macaulay modules over hypersurfaces of countable Cohen-Macaulay representation type , 2010, 1002.0137.

[20]  I. Reiten,et al.  Skew group algebras in the representation theory of artin algebras , 1985 .

[21]  Naoya Hiramatsu On the stable hom relation and stable degenerations of Cohen–Macaulay modules , 2015, Journal of Pure and Applied Algebra.

[22]  W. Geigle The Krull-Gabriel dimension of the representation theory of a tame hereditary Artin algebra and applications to the structure of exact sequences , 1985 .

[23]  R. Gordon,et al.  The Gabriel dimension of a module , 1974 .

[24]  H. Knörrer Cohen-Macaulay modules on hypersurface singularities I , 1987 .